第一部分:机器学习
一.概述
人工智能的一个分支。设计一个系统,使它能够根据提供的训练数据按照一定的方式学习,随着训练次数的增加,该系统可以在性能上不断学习和改进;通过参数优化的学习模型,能够用于预测相关问题的输出。
二.用途
1.机器学习可以进行数据清洗、特征选择;确定算法模型、参数优化;结果预测等;
2.机器学习并不是:大数据存储、并行计算;做机器人等。
三.流程
数据收集、数据清洗、特征工程、数据建模。
第二部分:数学分析
一.常用函数导数

二.积分应用
1.n的阶乘的对数:

将n的阶乘的对数转化为若干对数之和,再利用积分公式求解:

2.gama函数:用于计算某些非整数的阶乘