第一部分:数据特征预处理
特征处理:通过特定的统计方法(数学方法)将数据转换成算法要求的数据。
数值型数据:标准缩放(归一化、标准化)、缺失值处理
类别型数据:one-hot编码
时间类型:时间的切分
sklearn.preprocessing模块提供了一些数据预处理API
一.归一化
1.目的
在特征(维度)非常多的时候,可以防止某一维或某几维对数据影响过大,把不同来源的数据统一到一个参考区间下,使得不同数值范围的数据变得同等重要,预测结果更有意义。
例如:一个人的身高和体重两个特征,假如体重50kg,身高175cm,由于两个单位不一样,数值大小不一样。如果比较两个人的体型差距时,那么身高的影响结果会比较大。
2.原理
通过对原始数据进行线性变换把数据映射到[min,max]之间,通常取[0,1]:
3.代码
1)普通归一化
def feature_normal(data_set)
#特征归一化
min_vals = data_set.min(0)
max_vals = data_set.max(0)
ranges = max_vals - min_vals
norm_data = np.zeros(np.shape(data_set))
# 得出行数
m = data_set.shape[0]
# 复制min_vals,行数乘m,再进行矩阵相减
norm_data = data_set - np.tile(min_vals, (m,1))
# 复制ranges,行数乘m,再进行矩阵相除
norm_data = norm_data/np.tile(ranges, (m, 1)))
return norm_data
2)调用sklearn.preprocessing.MinMaxScaler
MinMaxScaler(feature_range=(min,max))----每个特征缩放到给定范围(默认[0,1]);
MinMaxScaler.fit_transform(X)----返回转换后的array,X:numpy array格式的数据[n_samples,n_features]。
>>> from sklearn.preprocessing import MinMaxScaler
>>