CV物体检测与目标检测----概述与R-CNN

本文介绍了目标检测的任务描述,重点讲解了R-CNN模型,包括Overfeat模型、候选区域生成、特征提取、SVM分类和NMS非极大值抑制等关键步骤,同时探讨了R-CNN的优缺点及其在训练和测试过程中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一部分:简介

项目架构:

数据采集层:数据标注、数据存储
深度模型层:数据预处理、多GPU模型训练
用户层:网页、小程序,获取识别检测结果

图像识别三大任务:

目标识别:只有一个物体,分类,定性目标,确定目标是什么;
目标检测:有多个物体,定位目标,确定目标是什么以及位置;
目标分割:像素级的对前景与背景进行分类,将背景剔除。

目标检测任务描述

1.算法分类
模型训练:加入全连接层,通过softmax进行概率计算,交叉熵损失衡量。
1)两步走的目标检测:先进行区域推荐,而后进行目标分类,如R-CNN、SPP-net、Fast R-CNN、Faster R-CNN。
2)端到端的目标检测:采用一个网络一步到位,如YOLO、SSD。

2.常见指标IoU(Intersection over union,交并比)
bounding box(bbox)----目标标记框
Ground-truth bounding box----图片当中真实标记的框
Predicted bounding box----预测的时候标记的框
LoU即真实框与预测框的交集并集之比----IOU=(A∩B)/(A∪B)
在这里插入图片描述

第二部分:R-CNN

一.Overfeat模型

由于目标检测中,一张图片可能有多个物体,所以不适用简单的图片分类。Overfeat模型的思路是,对于输入的一张图片,设置k个大小形状不同的滑动窗口,对于每个滑动窗口,依次从图片的左上角按行按列滑动,得到m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值