上进的凡凡,幸运数组,字符串魔法(easy)

本文介绍了几种算法竞赛中常见的解题思路与技巧,包括利用前缀和解决数组问题、通过计数解决字符串问题等。通过对具体题目进行分析,展示了如何高效地解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上进的凡凡
code1:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 9;
ll a[N],f[N];
int main()
{
	int t;
	cin >> t;
	for(int i = 1; i <= t; ++i)
	{
		f[i] = 1;
		cin >> a[i];
		if(a[i] >= a[i-1])
			f[i] += f[i-1];
		ans += f[i];
	}
	cout << ans << endl;
	return 0;
}

code2:

#include <iostream>
using namespace std;
int main() {
    int last = 0;
    int temp;
    int n;
    long long res = 0;
    long long count = 0;
    cin >> n;
    while (n--) {
        cin >> temp;
        //如果大于等于上一个数,nice数组长度+1
        //否则计算子数组的个数,长度重置为1
        if (temp >= last) {
            count++;
        } else {
            res += count * (count + 1) / 2;// 连续的count个,等于1+...+count,即等差数列求和公式
            count = 1;
        }
        last = temp;
    }
    //处理一下最后剩下的nice数组
    res += count * (count + 1) / 2;
    cout << res;
}

幸运数组
这道题关键是想出来用前缀和,当 sum[i] % k , 即余数出现过相同的,那么就可以用当前的位置减去第一次出现的位置;当 sum[i] == 0 ,维护一下max就行。
至于为什么余数相同,因为余数相同,相减得到的就是倍数。

#include <iostream>
#include <memory.h>
using namespace std;
int sum[100005];
int pos[100005];
int main() 
{
    int temp;
    int k, t, n;
    cin >> t;
    while (t--) 
	{
        memset(pos, 0, sizeof(pos));
        int Max = -1;
        cin >> n >> k;
        for (int i = 1; i <= n; ++i) 
		{
            cin >> temp;
            sum[i] = (sum[i - 1] + temp) % k;
            if(sum[i] == 0){
            	Max = max(Max, i);continue;
			}
            if (!pos[sum[i]]) 
				pos[sum[i]] = i;
				// pos[i]记录是第一次出现这个余数的位置
				// 因为是从前往后扫,所以存第一个出现的位置可以扫出最大长度 
             else 
                Max = max(Max, (i - pos[sum[i]]));  
        }
        cout << Max << endl;
    }
}

B字符串easy
从题意上来看,串的形式内容就是“AAAABBBBBBBAAAAAABBAAABBBB”

无非就是用一段 B + 一段 AB 或者 一段AB + AB 求最长的一个

#include<bits/stdc++.h>
using namespace std;
#define tb std::ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
int a[200010];
int main()
{
    tb;
    string s;
    int n, k = 0, maxx = 0;
    cin>>n>>s;
    for(int i = 0; i < n; ){
        int cnt = 0;
        while(s[i] == 'A')cnt++, i++;
        while(s[i] == 'B')cnt++, i++;
        a[k++] = cnt;
    }
    for(int i = 0; i < k; i++)
        maxx = max(maxx, a[i] + a[i+1]);
    cout<<maxx;
    return 0;
}

毅神代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
using namespace std;
const int maxn=200000+50;
int n,m,ans,f[maxn],cnt;
char ch[maxn];
int main()
{
    scanf("%d%s",&n,ch+1);
    ch[0]='C';
    for (int i=1; i<=n; ++i)
        if (ch[i]<ch[i-1]) f[++cnt]=1;
        else ++f[cnt];
    for (int i=1; i<=cnt; ++i)
        ans=max(ans,f[i]+f[i-1]);
    printf("%d\n",ans);
    return 0;
}

<think>好的,我现在需要帮助用户理解字符串哈希的概念及其应用场景。首先,用户的问题明确,但可能需要详细解释,尤其是对不熟悉哈希或字符串处理的人来说。我需要从基本定义入手,逐步展开,并确保涵盖应用场景和可能的实现方法。 首先,根据用户提供的引用内容,字符串哈希的定义涉及将字符串转换为固定长度的数值,通常是整数。引用[3]提到这是通过字符串前缀哈希法实现的,使用p进制数字的计算方法。这里需要解释p进制的作用以及如何将字符的ASCII码转换为哈希值。同时,引用[1]和[3]都提到了映射公式,应该详细说明公式的结构,比如每个字符乘以p的不同次方然后求和,再取模Q。 接下来,应用场景部分,用户提供的引用中提到了KMP算法、快速比较字符串区间、哈希表等。需要将这些点转化为实际应用案例。例如,在字符串匹配中,哈希可以快速比较子字符串是否相等,而不需要逐字符检查,这在算法优化中很常见。另外,哈希表用于统计字符频率,如引用[4]提到的数组作为简单哈希表记录字符出现次数,可以举例说明。 另外,用户可能对如何具体实现字符串哈希感兴趣,可能需要提到预处理前缀哈希,以及如何通过公式计算任意区间的哈希值。引用[1]中的预处理步骤很重要,这里需要解释清楚,比如预处理每个前缀的哈希值,并存储,这样在查询时可以快速计算任意子字符串的哈希。 还需要注意用户可能存在的疑问点,例如哈希冲突的可能性,以及如何选择p和Q来减少冲突。引用[1]和[3]提到不同的字符串映射到不同的数字,但实际上可能存在冲突,所以需要说明理想情况下设计良好的哈希函数可以减少冲突,但并非绝对。 此外,引用[2]提到了Java中的hashCode()方法,可以作为一个实际例子,说明不同编程语言中字符串哈希的实现方式。这可能帮助用户理解实际应用中的哈希函数。 最后,生成相关问题需要考虑用户可能进一步想了解的内容,比如具体算法实现、解决冲突的方法、性能优化等。需要确保问题覆盖这些方面,帮助用户深入探索。 总结,回答的结构应该是:定义、核心原理、应用场景、实现方法,然后相关问题。需要保持语言清晰,用例子辅助说明,并正确引用提供的资料。</think>### 字符串哈希的定义及应用场景 #### 一、定义 字符串哈希是一种将任意长度的字符串转换为**固定长度数值**(通常为整数)的技术,其核心是**字符串前缀哈希法**。通过将字符串视为一个$p$进制数,计算其哈希值,使得不同字符串尽可能映射到不同的数值。具体映射公式为: $$ H(X_1X_2\cdots X_n) = \left( X_1 \cdot p^{n-1} + X_2 \cdot p^{n-2} + \cdots + X_{n-1} \cdot p + X_n \right) \mod Q $$ 其中,$X_i$表示字符的ASCII码,$p$和$Q$为预设的质数,通常$p=131$或$13331$,$Q=2^{64}$以避免哈希冲突[^1][^3]。 --- #### 二、核心原理 1. **预处理前缀哈希** 预先计算字符串所有前缀的哈希值并存储,例如: $$ H_{\text{prefix}}[i] = H(X_1X_2\cdots X_i) $$ 这支持快速计算任意子串的哈希值。 2. **快速计算子串哈希** 利用前缀哈希值,子串$X_lX_{l+1}\cdots X_r$的哈希可通过公式计算: $$ H_{\text{sub}} = (H_{\text{prefix}}[r] - H_{\text{prefix}}[l-1] \cdot p^{r-l+1}) \mod Q $$ 时间复杂度为$O(1)$[^1]。 --- #### 三、应用场景 1. **字符串快速比较** 比较两个子串是否相等时,直接比较哈希值即可,无需逐字符比对。例如在KMP算法中,哈希可用于加速模式匹配[^1]。 2. **数据去重与统计** 哈希表结合字符串哈希可高效统计词频或检测重复字符串。例如统计小写字母出现次数时,可用数组模拟哈希表[^4]。 3. **算法优化** 在需要频繁比较子串的场景(如最长重复子串、回文判断)中,哈希可将时间复杂度从$O(n^2)$降至$O(n)$。 4. **密码学与数据校验** 哈希值常用于验证数据完整性,如文件指纹生成或密码存储(需结合加盐处理)[^2]。 --- #### 四、示例代码(Java中字符串哈希) ```java String str = "Hello"; int hashCode = str.hashCode(); // 调用内置哈希函数 System.out.println(hashCode); // 输出:69609650 ``` Java的`hashCode()`方法将字符串映射为整数,具体实现基于字符的加权和。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值