GBDT、Xgboost、LightGBM对比,异同点,并行策略

阐述GBDT、xgboost、lightGBM的异同,xgb的优势,lgb的优势,二者的并行如何实现。

1 XGBoost 与 GBDT 异同

  1. 传统 GBDT 以 CART 作为基分类器,XGboost 还支持线性分类器,这时 XGboost 相当于带 L1 和 L2 正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。
  2. 传统 GBDT 在优化时只用到一阶导数信息,xgboost 则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。xgboost 还支持支持自定义代价函数,只要函数可一阶和二阶求导。
  3. XGboost 在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的 score 的 L2 模的平方和。降低了模型的variance,使学习来的模型更加简单,防止过拟合。
  4. Shrinkage(缩减),相当于学习速率(xgboost 中的 eta)。xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。(补充:传统 GBDT 的实现也有学习速率
  5. 列抽样(column subsampling)。xgboost 借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合&#
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值