线性代数及应用1.4.1矩阵方程的计算

37今日速递!

 在上一期,我们讨论了关于解决线性方程组的第三种方法:矩阵方程。

这期我们来讲讲它的计算~

不过在此之前,我们仍需要对其进行梳理。

如果我们拿到了一个m*n的矩阵A

根据Ax的定义,我们不难发现A其实就是增广矩阵除开最右列的矩阵,它的每一列可以生成一个R^{m},这是因为元素的个数和矩阵的行数要保持一致。

由此可以得出第一个定理一A的各列生成R^{m}

再结合我们前面讲的线性组合可知

Ax = c_1x_1+c_2v_2+...+c_pv_p= b

c_1 不等于0,c_2,c_3,...,c_p = 0,则有了Ax= c_1v_1 = b_1,

同理,当c_2不等于0,c_1,c_3,...,c_p=0,则有了Ax= c_2v_2 = b_2,

以此类推,我们会发现一个规律,由于b_1,b_2,...,b_p是span{c_1,c_2,...c_p}的子集,所以可以得出定理二R^{m}中的每一个b都是A的列的一个线性组合。

根据前一期我们的讨论,线性方程组的三个解决方法,他们的解集都是等价的,所以定理二的成立就意味着:对于R^{m}中每个b,方程Ax=b有解。(定理三)

我们仔细观察不难发现,A其实是x的系数矩阵,在前面讲述增广矩阵时,我们讨论过主元和主元列的问题,我们发现如果有解,则增广矩阵的最右列是不能有主元的。

所以就有了定理四A在每一行都有一个主元位置。

这四个定理是线性方程组最重要的概念,大家一定要理解哟~

对于Ax=b的计算,大家是不是还在傻傻地列出Ax,写出它的线性组合再去计算呢?

这里37交给大家一个更简便的方法。

我们仔细观察Ax的算式,发现由它生成的线性方程组,是分别由A的第一行元素对应与x的列矩阵元素相乘,就像这样:

\begin{bmatrix} 2 &3 &4 \\ & & \\ & & \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1+3x_2+4x_3\\ \\ \end{bmatrix}

第二列和第三列还是如此。

我们就可以引入一个 Ax的行-向量规则:

如果乘积Ax有定义,则Ax的中的第i个元素是A的第i行元素和x的相应元素乘积之和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值