线性代数及应用1.5.2非齐次线性方程组

大家好,这里是37的数学屋~

在上一节中,我们讨论了线性代数中的齐次线性方程组,我们这节来讲讲非齐次线性方程组。

在步入正题之前,我们先来简单引入一个概念——参数向量。

我们在前面的章节中简单地讲解过向量方程,就是形如

x_{1}v_{1} +x_{2}v_{2} + ... + x_{p}v_{p} = b

的式子 。

那我们知道,在Ax = b中,x的展开式是一个列,而A的展开式则是一个矩阵,如果我们令A的列数为nx的行数为m,则有n = m

当我们将Ax = 0的通解写成向量形式后,我们会得到形如

x = su + tv

的式子。这个式子就是我们所说的参数向量形式。可以看到我们的x_{1},x_{2},...,x_{p} 都被定义成了s,t,...,z这样的参数。

还是上一节的例子:10x_{1} -3x_{2} - 2x_{3} = 0的化简。

我们发现这个式子如果按照Ax = bA的矩阵来展开,它的列数是大于行数的,这也就导致了会有两个自由变量x_{2}x_{3}

再来看看它的解集

x =x_{2}\begin{bmatrix} 0.3\\ 1\\ 0 \end{bmatrix} +x_{2}\begin{bmatrix} 0.2\\ 0\\ 1 \end{bmatrix}

对照上述讲的x = su + tv,是不是x_{1},x_{2},...,x_{p} 都被定义成了s,t,...,z这样的参数,而像\begin{bmatrix} 0.3\\ 1\\ 0 \end{bmatrix}\begin{bmatrix} 0.2\\ 0\\ 1 \end{bmatrix}这样的向量则写成了uv

10x_{1} -3x_{2} - 2x_{3} = 0的式子我们称之为平面的隐式描述,而像x =x_{2}\begin{bmatrix} 0.3\\ 1\\ 0 \end{bmatrix} +x_{2}\begin{bmatrix} 0.2\\ 0\\ 1 \end{bmatrix}则被称作显示描述。

在了解完参数向量这个概念之后,我们正式开始讨论非齐次线性方程组。

我们知道,上一节中对齐次线性方程组有一个通式Ax = 0,类比微积分中的非齐次式,我们可以得到Ax = b就是非齐次线性方程组的通式。 

而对于非齐次线性方程组有一个说法是,它的通解可以写成一个单独的向量加上它对应的齐次方程的一些向量的任意线性组合。

也就是说,当非齐次线性方程组有许多解的时候,他的通解形式可以写成参数向量。

这个怎么来理解呢?

就我们来单纯的拿一个式子来举例。比如

A_{1}x_{1} +A_{2}x_2 + A_{3}x_{3}= b

我们其实可以看出它的自由变量是有x_2 和x_{3}两个。我们对其进行显示展开,得到下列式子:

A_{1}x_{1} = -A_{2}x_{2}-A_{3}x_{3} + b\\

x_{1} = -\frac{A_{2}}{A_{1}}x_{2} - \frac{A_{3}}{A_{1}}x_{3} + \frac{b}{A_{1}}

代入x

 x = \begin{bmatrix} x_{1}\\ x_{2}\\ x_{3} \end{bmatrix} = \begin{bmatrix} -\frac{A_{2}}{A_{1}}x_{2}-\frac{A_{3}}{A_{1}}x_{3} +b\\ x_{2}\\ x_{3}\end{bmatrix}

x=\begin{bmatrix} -\frac{A_{2}}{A_{1}}x_{2}\\ x_{2}\\ 0 \end{bmatrix} +\begin{bmatrix} -\frac{A_{3}}{A_{1}}x_{3}\\ 0\\ x_{3} \end{bmatrix} + \begin{bmatrix} b\\ 0\\ 0 \end{bmatrix}

x = x_{2}\begin{bmatrix} -\frac{A_{2}}{A_{1}}\\ 1\\ 0 \end{bmatrix} + x_{3}\begin{bmatrix} -\frac{A_{3}}{A_{1}}\\ 0\\ 1 \end{bmatrix} +\begin{bmatrix} b\\ 0\\ 0 \end{bmatrix}

这样就会得到上述结论的证明,将通解x写成参数向量的形式。

在上文我们讲到过,我们可以将齐次线性方程Ax = 0的通解写成x = su + tv,那么我们结合非齐次线性方程的解的推导则可以写成方程Ax = b的通解x = su + tv + p(st是参数)

那我们能不能试着从几何的角度来理解这个非齐次线性方程组通解的式子呢?

我们知道,uv是两个向量,我们假定这两个向量是在R^2中,那么他们就是在一个笛卡尔坐标系中的两个向量,他们的系数是st

有了这个假设,我们就可以将两个向量加起来得到一个新向量v_{h},则有非齐次线性方程组的解集x可以写成x = p + v_{h}

那我们对于v_{h}则会有经过它的一条直线,加上p之后,只是沿着p的方向进行平移距离p

就像这样:

如果我们设直线L是通过(0,v_{h})的直线,那么L'就是L上每个点加上p后的直线,而p点也在L'上,我们也可以说L'是通过p点并且与L平行的直线。

那我们就很容易归纳出一个结论:Ax = b的解集就是一条通过p点并且与Ax = 0的解集平行的直线。

那我们如何对Ax = b的解集进行一个总结呢?

首先,Ax = b对于某个b是相容的,且由于p点在Ax = b解集的直线上,所以p就是Ax = b的特解。

那么它的解集就是所有形如x = p + v_{h}的形式,其中v_{h}Ax = 0的通解。

我们这里只讨论了R^2中的情况,也就是只有一个自由变量。那当我们有两个自由变量,n>3的时候呢?非齐次线性方程的解集又是什么样子的呢?

实际上,当自由变量多一个的时候,解集就会多一条直线,比如,当我们的自由变量有两个的时候,就会有两条线uv,但是它们并不是在笛卡尔坐标系中表示,而是因为在R^3中我们一般会在空间几何坐标系中进行思考。

向量u和向量v由于不平行,在空间中会相交成一个平面,再加上p的平移后,实际上是整个平面的平移。

但是值得注意的是,上述定理只适用于Ax = b至少有一个非零解p的前提。当Ax = b无解时,解集就是空集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值