Python数据可视化(二)(matplotlib)

本文分享了Python的matplotlib库在直角坐标和极坐标下的图表绘制技巧,包括气泡图、柱形图+折线图组合、树状图、箱型图、雷达图和玫瑰图,适用于数据汇报和展示,帮助比较和分析多个指标或数据分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一些python-matplotlib作图小技巧,用于汇报展示。

一、直角坐标下绘图

(1)气泡图
功能:同时比较3个指标的数据表现。(2个指标用散点图,3个指标用气泡图,大于3个指标用雷达图)
示例代码:

n=[] #产品名称
x=[] #销量
y=[] #销售额
z=[] #毛利率%

# 气泡图
plt.scatter(x,y,s=z*300,color='r',marker='o')  # 因z太小,气泡太小。可考虑同倍数放大

(2)图形组合(柱形图+折线图)
功能:同时展示值与比率/比率
示例代码:

x=[] #月
ya=[] #销售额
yb=[] #同比增长率

#组合图(条形图+折线图)

plt.bar(x,ya,color='c',label='axxx')
plt.legend(loc='upper left',fontsize=15)

plt.twinx() #次坐标轴
plt.plot(x,yb,linewidth=3,label='byyy')
plt.legend(loc='upper right',fontsize=15)

(3)树状图
功能:类似饼图,展示多个项目的数据比例关系
示例代码:

import squarify as sf

x=[]# city
y=[]# sales
percent=[]# salse-percent
colors=['lightgreen','pink','yellow','silver',,,,]#用于填充颜色

chart=sf.plot(sizes=y,label=x,color=colors,value=percent,edgecolor='white',linewidth=2)
plt.axis('off')

(4)箱型图
功能:展示数据分布情况,比较不同项目的分布差异
示例代码:

'''
data是dataframe数据
'''
x1=data['city-a']
x2=data['city-b'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值