安装李沐深度学习d2l包报错解决方法

本文介绍了如何从官方网站下载并使用pip安装名为d2l的Python包,步骤包括下载文件到环境路径,切换目录,然后通过pip安装并验证包是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 关于李沐《动手学深度学习》d2l 的安装教程 #### 创建 Anaconda 虚拟环境 为了确保兼容性和隔离性,推荐通过 Anaconda 创建独立的 Python 虚拟环境。以下是具体的操作步骤: 1. 打开 **Anaconda PowerShell Prompt** 并运行以下命令来创建一个新的虚拟环境: ```bash conda create --name d2l-env python=3.9 -y ``` 这里 `d2l-env` 是自定义的虚拟环境名称,Python 版本设置为 3.9。 2. 激活刚刚创建的虚拟环境: ```bash conda activate d2l-env ``` #### 安装 PyTorch 和相关依赖项 在激活的虚拟环境中,可以按照以下方法安装 CPU 或 GPU 版本的 PyTorch 及其配套库。 ##### (1) 安装 CPU 版本的 PyTorch 对于仅需支持 CPU 计算的情况,可以直接使用以下命令完成安装: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 验证安装是否成功可以通过检查已安装列表: ```bash conda list ``` 如果看到 `pytorch`, `torchvision`, 和 `torchaudio` 列表,则表明安装无误[^1]。 ##### (2) 安装 GPU 版本的 PyTorch 如果你拥有 NVIDIA 显卡并希望利用 GPU 加速计算,请先确认显卡驱动程序和 CUDA 工具链版本匹配。例如,CUDA 11.2 需要搭配 cuDNN 8.2.1 使用。假设你的系统已经满足这些条件,可执行以下命令安装 GPU 支持的 PyTorch: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu113 ``` 注意替换 URL 中的 CUDA 版本来适配实际需求[^5]。 #### 安装 d2l 库 最后一步是安装李沐团队开发的 `d2l` 教程专用库。由于网络原因或其他因素可能导致官方源速度较慢甚至失败,因此强烈建议切换至国内镜像站点加速下载过程。 1. 使用阿里云镜像源安装指定版本的 d2l 库: ```bash pip install d2l==0.17.6 -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com ``` 2. 如果遇到特定问题或者需要离线安装,可以从本地文件路径加载 whl 文件形式分发: ```bash pip install /path/to/d2l-*.whl ``` 替换 `/path/to/` 为你存储轮子文件的实际目录位置[^3]。 --- ### 注意事项 - 若初次尝试未能顺利完成某些环节(比如 d2l 库无法正常安装),可能是因为所选 Python 解释器版本不合适;此时不妨参照他人经验调整基础解释器到更稳定的选项如 Python 3.9。 - 修改 Conda 默认频道为清华大学开源软件镜像服务能够显著提升资源获取效率减少超时错误发生几率[^4]: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值