Python代码加速:Numba与Cython的应用
1. Numba库加速Python代码概述
Numba库可通过即时编译(JIT)来加速Python代码。以下是几个使用Numba的示例:
- 数组求和与累积求和 :用于展示Numba的基本用法。
- Julia集计算 :一个更实际的Numba用例,难以用向量表达式定义。
- Heaviside阶跃函数的标量内核向量化 。
这些示例展示了Numba的常见使用模式,Numba库还有更多功能,如GPU代码生成。更多信息可查看官方文档:http://numba.pydata.org/doc.html。
2. Cython简介
Cython和Numba一样,也是加速Python代码的解决方案,但采用了完全不同的方法。Numba是将纯Python代码转换为即时编译成机器码的LLVM代码的Python库,而Cython是Python编程语言的超集,它通过类似C的属性扩展了Python,允许使用显式和静态类型声明。其目的是将代码转换为高效的C或C++代码,编译成Python扩展模块后可从常规Python代码中导入和使用。
Cython主要有两个用途:
- 加速Python代码。
- 生成与编译库交互的包装器。
使用Cython时,需要修改目标Python代码,相比使用Numba,涉及的工作更多,需要学习Cython的语法和行为。不过,Cython能对Python代码的处理提供更细粒度的控制,还有一些Numba不具备的功