【论文阅读】HRNet:Deep High-Resolution Representation Learning for Human Pose Estimation

### HRNet 论文与实现 HRNetHigh-Resolution Net)是一篇在计算机视觉领域具有重要影响力的论文,主要关注高分辨率表示学习及其在人体姿态估计中的应用[^1]。该论文由微软亚洲研究院提出,并在CVPR 2019上发表。以下是关于HRNet论文的下载链接以及其实现的相关信息。 #### 论文下载链接 HRNet的原始论文可以在以下链接找到: - [HRNet: Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1908.07919) [^1] 此外,GitHub上也有一个官方维护的仓库,提供了详细的代码实现和相关资源: - [HRNet GitHub Repository](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch) [^2] #### 实现细节 HRNet的核心思想是通过保持高分辨率特征图贯穿整个网络,同时逐步引入低分辨率特征图以捕获多尺度信息。最终,网络将所有分辨率的特征图融合,生成高分辨率的输出[^1]。 在实现方面,HRNet-W32和HRNet-W48是两种常见的配置,分别对应不同的网络宽度。具体来说: - **HRNet-W32** 的高分辨率子网宽度为32,其他三个并行子网的宽度分别为64、128和256。 - **HRNet-W48** 的高分辨率子网宽度为48,其他三个并行子网的宽度分别为96、192和384 [^2]。 官方提供的PyTorch实现包括了模型定义、训练脚本以及预训练模型,方便研究者快速复现实验结果。以下是代码示例: ```python import torch import torch.nn as nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() # 定义卷积层 self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out ``` 上述代码展示了HRNet中使用的残差块(Bottleneck),它是构建高分辨率分支的基础组件[^2]。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值