目录 一、数据集创建全流程 二、分步详解与工具推荐 1. 明确任务需求 2. 数据采集策略 3. 数据清洗自动化 4. 高效的数据标注 标注工具对比 标注技巧 5. 数据增强 文本增强技术 6. 数据集划分与管理 7. 格式转换模板 三、特定数据集案例 案例1:自定义植物病害检测数据集 案例2:方言语音识别数据集 四、技巧与避坑指南 质量保障措施 常见陷阱及解决方案 创新数据收集方法 五、实用工具链推荐 六、数据集发布模板 基准测试 自制AI数据集通常包括数据收集、数据清洗、数据标注和数据组织四个步骤。 一、数据集创建全流程