无人机影像的纹理特征提取【ENVI+Python】--纯操作无原理

本文介绍了使用ENVI和Python进行无人机影像的纹理特征提取,包括辐射定标、波段堆叠、PCA及GLCM纹理特征(如均值、方差等)的计算。通过大疆智图进行辐射定标,并处理图像中的空值问题,最终得到8个纹理图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天看了张琦琦同学三月新发表的一篇forests文章,顺便学习了一下以前一直早有耳闻但从来不会的遥感影像纹理特征提取的操作(我是小辣鸡),做个学习记录~今天用到的示例数据是今年一月初的精灵4多光谱P4M获取的冬小麦影像,包含五个波段R,G,B,Nir,RedEdge。在这里插入图片描述
主要包含辐射定标,layer stacking,PCA,提取第一主成分,基于GLCM提取纹理特征(Co-occurrence Measures)。

8种纹理因子:

均值(Mean)、方差(Variance)、协同性(Homogeneity)、对比度(Contrast)、相异性(Dissimilarity)、熵(Entropy)、角二阶矩(Angular Second Moment)、相关性(Correlation)。
1.辐射定标:提供两种方法
(1)无人机影像辐射定标方法
之前写过,不再赘述。
(2)直接用大疆智图软件导入反射率灰度板一步合成出反射率图像大疆智图的辐射定标
2.五个单波段反射率图像的layer stacking。
3.PCA
在这里插入图片描述
pca的输入是layerstacking.tif
在这里插入图片描述
在这里插入图片描述
pca之后提取第一主成分(band math)–Co-occurrence Measures-

在这里插入图片描述-得到图像数据类型为8通道的32位float,单通道导出8个纹理图像。
在这里插入图片描述
在pca这一步envi报了错,原因是对图像中的空值无法计算,在此进行了一个给Nan值补0的操作。代码由论文原作者提供,灰常感谢~~

from osgeo import gdal
import numpy as np
import os
import pandas as pd

#读取tif数据集
def readTif(path):
    dataset 
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值