目录
2.1 使用 Hugging Face Transformers 实现文本生成
2.2 使用 Hugging Face Transformers 实现机器翻译
6.1 Transformer 在其他 NLP 任务中的应用
摘要
在人工智能领域,Transformer 架构自 2017 年被提出以来,便以其卓越的性能和广泛的应用前景引发了大量的研究和实践。本文将深入浅出地讲解 Transformer 的核心概念、关键组件及其在文本生成与翻译中的应用。通过详细的代码示例和实际应用场景分析,帮助读者全面掌握 Transformer 的使用方法和技巧,为自然语言处理任务提供强大的解决方案。无论是对 AI 技术感兴趣的初学者,还是希望深入了解 Transformer 的开发者,本文都能为您提供有价值的知识和实用的指导。
一、概念讲解
1.1 Transformer 架构
Transformer 是一种基于注意力机制(Attention Mechanism)的深度学习架构,最初由 Vaswani 等人在 2017 年提出。它通过自注意力(Self - Attention)机制处理序列数据,能够捕捉长距离依赖关系,在自然语言处理(NLP)任务中表现出色。与传统的循环神经网络(RNN)和卷积神经网络(CNN)相比,Transformer 具有并行计算的优势,

订阅专栏 解锁全文
734

被折叠的 条评论
为什么被折叠?



