详解MLOps,从Jupyter开发到生产部署

大家好,Jupyter notebook 是机器学习的便捷工具,但在应用部署方面存在局限。为了提升其可扩展性和稳定性,需结合DevOps和MLOps技术。通过自动化的持续集成和持续交付流程,可将AI应用高效部署至HuggingFace平台。

本文将介绍MLOps的全面实践,讲解如何将Jupyter Notebook中的机器学习模型通过自动化流程成功部署到生产环境。

1.代码迁移与自动化

在实现机器学习模型从 Jupyter Notebook 到生产环境的迁移过程中,关键在于如何将实验阶段的代码转换为可在集成开发环境(IDE)中运行的格式。

以下示例展示了一个用于图像识别的卷积神经网络(CNN)模型的迁移过程,该模型专门用于区分猫和狗的图片。

数据集地址,https://www.kaggle.com/datasets/tomasfern/oxford-iit-pets。

# src/train.py

from os.path import join
from fastai.vision.all import *
from utils import is_cat
import yaml
with open("params.yaml", "r") as stream:
    params = yaml.safe_load(stream)

# 路径
data_path = join('data', 'images')
metrics_path = 'metrics'
models_path = 'models'

# 实例化数据加载器
dls = ImageDataLoaders.from_name_func(
    os.getcwd(),
    get_image_files(data_path),
    valid_pct=params['train']['valid_pct'],
    seed=params['train']['seed'],
    label_func=is_cat,
    item_tfms=Resize(params['train']['resize_img'])
)

print(f"Image count for dataset")
print(f"- Training: {len(dls.train_ds)}")
print(f"- Validation: {len(dls.valid_ds)}")

# 微调模型
learn = vision_learner(dls, resnet34
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python慕遥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值