
Python深度学习项目实战
文章平均质量分 96
深度学习项目实战,以问题为导向,主要涉及动态优化、神经网络等内容,通过项目实践助力对深度学习的理解,在实践中提升能力,在资源中有相关代码。
python慕遥
Python创作与分享
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
项目实战:基于深度学习的人脸表情识别系统设计与实现
大家好,人脸表情识别是计算机视觉领域中的一个重要研究方向,它涉及到对人类情感状态的理解和分析。随着深度学习技术的发展,基于深度学习的人脸表情识别系统因其高精度和强大的特征学习能力而受到广泛关注。本文旨在探讨基于深度学习的人脸表情识别系统的设计与实现,从数据处理、模型训练等多个方面进行全面分析。原创 2024-11-23 11:30:00 · 2129 阅读 · 0 评论 -
项目实战:基于YOLOv5算法的人群密度检测系统设计与实现
大家好,本文将介绍基于改进后的YOLOv5目标检测模型,设计并实现人群密度检测系统。使用YOLOv5的源代码,在此基础上修改和训练模型, 数据集选用crowdhuman数据集。对yolov5源码中的文件进行修改,更换主干网络、改进损失函数。系统的前后端代码则体现在sever.py、detect_web.py和head-detect-web 文件夹中,主要基于Flask实现。原创 2024-11-13 01:32:14 · 1081 阅读 · 0 评论 -
项目实战:基于驾驶员面部特征的疲劳检测系统
example_videos文件夹保存供检测使用的视频;README_images文件夹保存此READNE.md用到的图片;src文件夹包含运行文件main.py,界面类文件UI.py,工具类文件utils.py,预训练人脸关键点检测模型文件shape_predictor_68_face_landmarks.dat,以及警报声音文件warning.mp3。原创 2024-11-12 19:20:46 · 1504 阅读 · 0 评论 -
利用切片辅助的超级推断进行小目标检测(小物体检测)
大家好,目标检测是计算机视觉中的基本任务,在高层次上,它涉及预测图像中物体的位置和类别。像You-Only-Look-Once(YOLO)系列中的最先进(SOTA)深度学习模型已经达到了令人瞩目的准确度,然而目标检测的一个难点是小物体检测。本文将介绍使用切片辅助的超级推断(SAHI)来检测数据集中的小物体。检测小物体很困难,物体越小,检测模型可用的信息就越少。如果汽车在远处,它可能只占据图像中的几个像素。与人类难以辨认远处物体的情况类似,在没有视觉可辨识特征(如车轮和车牌)的情况下更难识别汽车。原创 2024-11-03 10:00:00 · 958 阅读 · 0 评论 -
深度学习项目实战:Python深度强化学习求解动态旅行商问题
深度强化学习(Deep Reinforcement Learning,DRL)可以用于解决优化问题,尤其是具有复杂、高维度的状态空间和动作空间的问题。它结合了深度学习的强大表示能力和强化学习的学习框架,深度神经网络可以学习复杂的特征和模式,而强化学习可以在与环境的交互中进行学习和优化,因此能够有效地解决复杂的优化问题。其基本思路是将优化问题建模为强化学习问题,然后利用深度神经网络来学习策略或值函数,以最大化累积奖励或最小化成本函数。通过与环境的交互,智能体学习如何在不同状态下采取行动以达到最优解。原创 2024-05-03 10:46:31 · 3093 阅读 · 2 评论