
AI
文章平均质量分 88
AI专栏分类
csdn_tom_168
富如可求,虽执鞭之士,吾亦为之。如不可求,从吾所好。
展开
-
一文搞懂 Dify
Dify(Different Interface For You)是面向开发者的智能体(AI Agent)构建平台,通过可视化编排降低大模型应用开发门槛。其核心价值在于将复杂的模型训练、API对接、数据清洗等过程转化为拖拽式操作(类似AI领域的「WordPress」)。原创 2025-06-09 22:13:03 · 481 阅读 · 0 评论 -
Prompt 工程师必备的编程技能
Prompt工程师需掌握Python编程(基础语法、requests/pandas等库)、API调用(RESTful/SDK)、数据处理(分析/可视化)和自动化脚本编写能力,并熟悉Git版本控制。核心技能为Python+API集成,辅助技能包括数据分析和自动化优化,以高效开发和测试AI应用。原创 2025-06-09 21:58:41 · 361 阅读 · 0 评论 -
实用的 Prompt 设计框架与工具
摘要: 本文介绍了实用的Prompt设计框架与工具,主要包括5种设计框架(角色扮演、链式思考、反向Prompt、多轮对话、结构化输出)和6种工具(如PromptPerfect、FlowGPT等),帮助优化AI输出质量。通过结合框架指导和工具辅助,并参考行业案例,可高效构建自动化AI应用。最终强调"框架+工具+案例"三位一体的Prompt设计方法论,提升AI交互效果。原创 2025-06-09 21:50:03 · 431 阅读 · 0 评论 -
如何成为一名合格的 Prompt 工程师 ?
摘要: Prompt工程师的成长需要技术、实战与职业发展三维结合。核心能力包括领域知识融合、模型理解和结构化Prompt设计,掌握量化评估工具与跨界沟通技巧。进阶路径分阶段:1-2月打基础,3-6月深化技术并考取认证(如星火、AWS)。企业实战强调复杂系统设计(Agent编排/RAG)和效能优化(模板引擎化)。职业发展分P3-P5等级(年薪15万-200万+),可转向AI产品经理等方向。需持续参与竞赛、技术沙龙,聚焦工程化能力与多模态技术,避免基础指令编写的低效竞争。成长公式为:领域知识×模型理解×工程能力原创 2025-06-09 21:43:56 · 744 阅读 · 0 评论 -
SpringAI 集成 DeepSeek 以及多模型切换功能的demo
将模型列表和默认模型存储在数据库或配置中心(如 Nacos、Apollo),支持动态更新而无需重启服务。:SpringAI 应用可灵活切换 DeepSeek 的不同模型,满足多样化业务需求。原创 2025-06-09 21:24:34 · 204 阅读 · 0 评论 -
一文搞懂 AI Prompts(提示词)
Prompt 是用户向 AI 模型输入的指令或问题,用于引导 AI 生成特定的回答或执行任务。原创 2025-06-09 21:23:34 · 644 阅读 · 0 评论 -
AI Agent 与 AI RAG 的对比,以及未来发展趋势
需要特定领域(如电商推荐系统)的技术实现方案时,可提供详细需求获取定制化架构设计。Agent拆解子任务。原创 2025-06-09 19:33:22 · 736 阅读 · 0 评论 -
SpringAI和LangChain4j哪个更适合企业级应用开发?
摘要: Spring AI更适合企业级AI应用开发,优势体现在成熟度、微服务集成、安全合规及运维支持。LangChain4j适用于复杂场景(如多轮对话),但需额外开发企业级功能。建议混合架构:Spring AI作核心底座,LangChain4j处理特定复杂任务。关键决策因素包括企业认证需求与场景复杂度,Spring AI在稳定性、监控和资源优化方面表现更优,而LangChain4j版本兼容性和运维成本较高。优先采用Spring AI实现基础功能,必要时补充LangChain4j工具链。原创 2025-06-09 12:59:30 · 510 阅读 · 0 评论 -
SpringAI集成RAG与Milvus/FAISS完整指南 && FAISS与Milvus在RAG系统中的对比分析
特性FAISSMilvus性能极致快(毫秒级)快(受服务层影响)规模适合小规模(万级以内)适合大规模(百万级以上)功能仅向量搜索全功能(存储+检索+管理)扩展性需自行实现分布式原生支持分布式易用性需自行集成文档管理开箱即用运维复杂度低(纯客户端库)中高(需数据库运维)典型使用场景实时问答、边缘设备企业知识库、大规模RAG系统最终选择应根据具体业务需求、团队能力和资源状况综合决定。原创 2025-06-09 10:01:53 · 561 阅读 · 0 评论 -
SpringAI核心解析 && SpringAI支持哪些主流的AI模型?
Spring AI 通过标准化接口实现了对20+ 主流 AI 模型供应商的支持,涵盖文本生成、向量计算、图像生成、语音转换四大核心能力,并提供对开源模型的灵活扩展能力。开发者无需重构代码即可自由切换底层模型供应商。注:完整支持列表可查阅Spring AI 官方文档(持续更新)。原创 2025-06-09 10:01:23 · 771 阅读 · 0 评论 -
AI名词详解大全 && AI名词详解大全(中英对照表格版)
本AI名词大全涵盖了AI的基础概念、模型算法、数据处理、评估指标、应用领域、开发工具、部署运维、伦理安全及新兴技术,适用于AI学习者、开发者及研究人员参考。无监督学习 / Unsupervised Learning。监督学习 / Supervised Learning。机器翻译 / Machine Translation。机器学习 / Machine Learning。深度学习 / Deep Learning。卷积神经网络 / CNN。循环神经网络 / RNN。自然语言处理 / NLP。原创 2025-06-09 10:00:47 · 524 阅读 · 0 评论