本文来源公众号“Coggle数据科学”,仅用于学术分享,侵权删,干货满满。
原文链接:https://mp.weixin.qq.com/s/UvUysIf3ZFCV2Ac65SSGWg
-
赛题名称:MABe Challenge - Social Action Recognition in Mice
-
赛题类型:时序行为检测
-
赛题任务:基于小鼠的姿态估计数据,利用机器学习模型识别其独特的社会性行为。
https://www.kaggle.com/competitions/MABe-mouse-behavior-detection
赛题背景
动物(从小鼠到狼群)的社会行为极其复杂,包括筑巢、育幼、照顾同伴、保卫领地等。传统上,研究这些行为依赖于研究人员手动、主观地观察和记录视频,这是一个非常耗时、费力且容易产生偏差的过程。
虽然机器学习(ML)的进步为自动化行为分析带来了希望,但当前的方法仍面临两大严峻挑战:
-
数据稀缺与标注成本高:要识别一种新的行为,研究人员必须手动标注成百上千个新的训练样本。这对于研究罕见行为来说几乎是不可能的任务。
-
泛化能力差:在一个实验室、使用一套特定设备训练出的模型,在应用到其他实验室的数据时,性能通常会急剧下降。这意味着不同实验室可能无法用统一的标准衡量同一种行为,严重阻碍了科学研究的可重复性和可比性。
赛题任务
本次竞赛旨在直接解决上述挑战。你的任务是开发一个模型,能够准确识别出超过30种小鼠的社会和非社会行为。
-
数据基础:模型基于无标记运动捕捉(markerless motion capture) 技术从俯拍视频中提取出的小鼠姿态估计数据(如身体关键点的坐标)进行训练和预测,而不是直接处理原始视频像素。这降低了计算复杂度,并更专注于运动模式本身。
-
核心挑战与创新点:本次竞赛提供的数据集包含了来自20多个不同行为记录系统的超过400小时的标注视频。这意味着你的模型必须学会克服不同数据采集设备和姿态估计算法带来的差异性,学会捕捉行为最本质的运动特征,从而成为一个真正通用、可迁移的解决方案。
赛题数据
数据集的核心目标是让你根据小鼠的姿态轨迹数据(tracking),预测其发生的离散社会行为(annotation)。数据来自多个实验室,因此充满了不一致性和稀疏性,这直接模拟了现实科研中的挑战。
数据集主要分为三大类文件:
-
元数据文件 (
train.csv
/test.csv
) -
特征数据(姿态追踪) (
train_tracking/
/test_tracking/
) -
标签数据(行为标注) (
train_annotation/
)
评价指标
本次竞赛使用一个经过精心设计的 F-Score(F值)变体 作为评估模型性能的指标。它不是简单地计算所有预测的平均F值,而是考虑了数据集的特殊结构(多实验室、稀疏标注)。
row_id,video_id,agent_id,target_id,action,start_frame,stop_frame
0,101686631,mouse1,mouse2,sniff,0,10
1,101686631,mouse2,mouse1,sniff,15,16
2,101686631,mouse1,mouse2,sniff,30,40
3,101686631,mouse2,mouse1,sniff,55,65
赛题时间轴
-
2025年12月8日 - 报名截止日期 (Entry Deadline)
-
2025年12月8日 - 团队合并截止日期 (Team Merger Deadline)
-
2025年12月15日 - 最终提交截止日期 (Final Submission Deadline)
THE END !
文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。