【笔记】Canny算法

原理

Canny算子用于边缘检测,图像的边缘是图像内容变化很快的高频部分。信号变化的快慢可以用梯度直观地表示,因此检测边缘,就是更好地寻找大梯度位置。

Canny算子

Canny算子是由John F. Canny 于 1986年开发出来的一个多级边缘检测算法,被认为是最好的边缘检测算法,在没有特殊要求的情况下,应为首选算法。
Canny同时提出了评估边缘检测算法的标准:

  • 错误更少。检测出尽可能多的边缘,检测出的边缘尽可能都不是误报;
  • 响应更少。图中的边缘只响应一次。
  • 定位更准。检测出的边缘尽可能靠近图像的真实边缘;

Canny算子设计时同样遵循这3条规则,分为4个步骤:

  • 高斯模糊去噪;
  • 计算梯度幅值、方向
  • 非极大值抑制,去除边缘杂散响应,得到候选边缘
  • 迟滞阈值,确定强响应边缘和弱响应边缘,从若相应边缘提取强响应边缘。

模糊去噪

噪声与边缘一样,属于图像中的高频部分,使用高斯模糊、中值模糊等可以有效去除噪声。

计算梯度幅值和方向

这是边缘检测算法的核心与本质。求梯度时,对于连续信号使用求导,对于图像等离散信号使用差分(Sobel算子、Laplace算子等)。此处选用可以生成更粗大明亮边缘的Sobel算子作为示例。

  • a.选定Sobel算子;
    Sx=[−10+1−20+2−10+1],Sy=[−1−2−1000+12+1]S_x=\left[ \begin{matrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{matrix} \right],S_y=\left[ \begin{matrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & 2 & +1 \end{matrix} \right]Sx=121000+1+2+1Sy=10+120210+1
  • b.将Sx,SyS_x,S_ySxSy分别卷积图片III,得到图像在x,yx,yx,y轴方向的梯度值Gx,GyG_x,G_yGx,Gy
    Gx=Sx∗I,Gy=Sy∗IG_x=S_x*I,G_y=S_y*IGx=SxI,Gy=SyI
  • c.得到图像的梯度值和方向,并将θ\thetaθ近似到[0,45,90,135]是个方向,这四个方向可以确定8个方向(正方向+负方向)。
    G=Gx2+Gy2G=\sqrt{G_x^2+G_y^2}G=Gx2+Gy2
    θ=arctan(Gy/Gx)\theta=arctan(G_y/G_x)θ=arctan(Gy/Gx)

NMS

直接得到的边缘过于粗糙,包含较多边缘邻近假响应和杂散响应。NMS排除一些非边缘像素,保留一些细线条(候选边缘)。
Canny中执行NMS时,对于某个像素点位置,找到该点梯度正、负各自方向上最近的一个点,比较这三个点的梯度幅值,如果该点的梯度幅值大于其余两个,则保留该点为候选边缘点,否则抑制-剔除,伪代码如下:
在这里插入图片描述
在这里插入图片描述

迟滞阈值

  • 使用高低两个阈值th,tlt_h,t_lth,tl,如果某点的梯度幅值大于tht_hth,则它是强响应边缘-真实边缘像素,如果小于tlt_ltl,则它非边缘,如果介于tht_hthtlt_ltl之间,则它为弱响应边缘;
  • 对于每个弱响应边缘,如果它的8邻域内有一个像素点是强响应边缘,则它是强响应,否则它是非边缘。

参考

  • http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html
  • https://www.cnblogs.com/techyan1990/p/7291771.html
  • https://www.cnblogs.com/mightycode/p/6394810.html
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值