B+树

B+树是一种优化查询性能的索引结构,适用于数据库。它比B树更矮胖,每个中间节点包含更多元素,所有数据仅在叶子节点存储。B+树的叶子节点按顺序链接,方便范围查找,查询效率稳定,磁盘IO次数较少,尤其适合范围查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

B+树是应文件系统所需而产生的B树的变形树,那么可能一定会想到,既然有了B树,又出一个B+树,那B+树必然是有很多优点的,其中最重要的一点就是有者比B-tree更高的查询性能

B+树的特征

和B-树相比较,具备一些新的特征:

  • 有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个中间节点元素不保存数据,只用来索引,所有数据都保存在叶子节点(这样每个中间节点能存储更多的索引,从而减少磁盘IO数量,B+树相比与B-树更加矮胖);
  • 所有的叶子结点中包含了全部元素的信息,及指向含有这些元素记录的指针,且叶子结点本身依元素的大小自小而大的顺序链接。 (而B树的叶子节点并没有包括全部需要查找的信息);
  • 所有的中间节点元素都同时存在于子结点中,在子节点元素中是最大(或最小)的元素。(而B 树的非叶子节点也包含需要查找的有效信息);

3阶B+树示例:
在这里插入图片描述
说明:

  • 每一个父节点的元素都出现在子节点中,是子节点的最大(或最小)元素
  • 根节点的最大元素(这里是15).也就等同于等个B+树的最大元素。以后无论插入删除多好元素,始终要保持最大元素在根节点中。
  • 由于父节点的元素都出现在子节点中,因此所有叶子节点加在一起包含了全量的元素信息
  • 而且每一个叶子节点都带有指向下一个叶子节点的指针(在上图中用叶子节点间的箭头表示),形成了一个有序链表(便于直接遍历全部元素)
  • B+树中只有叶子节点有卫星数据(指的是索引元素所指向的数据记录,比如数据库中的某一行),而在B-树中,无论叶子节点还是非叶子节点都带有卫星数据,如下图

B-树中的卫星数据(Satellite Information):
在这里插入图片描述
B+树中的卫星数据(Satellite Information):
在这里插入图片描述

需要补充的是,在数据库的聚集索引(Clustered Index)中,叶子节点直接包含卫星数据。在非聚集索引(NonClustered Index)中,叶子节点带有指向卫星数据的指针。

单行查询

以3阶B+树查找元素3为例:
第一次磁盘IO:
在这里插入图片描述
。。。

第三次磁盘IO:
在这里插入图片描述

相比于B-树:

  1. 查询效率更高:因为B+树的中间节点没有卫星数据,只有索引,所有同样大小的磁盘页可以容纳更多的节点元素,故查询时磁盘IO次数会更少。从结构上,B+树比B-树更加矮胖。
  2. 查询效率更稳定:B+树的查询必循最终查找到叶子节点,而B-树只要找到匹配元素即可,无论匹配元素处于中间节点还是叶子节点。因此B-树的查找性能并不稳定(最好根节点,最坏叶子节点),而B+树的每一次查找都是稳定的

范围查找

B-树的范围查找过程,只能依靠繁琐的中序遍历(左根右):

自顶向下,查找到范围的下限(3):
在这里插入图片描述
中序遍历到元素6:
在这里插入图片描述
中序遍历到元素8:
在这里插入图片描述
中序遍历到元素9:
在这里插入图片描述
中序遍历到元素11,遍历结束:
在这里插入图片描述

B+树的范围查询(在叶子节点组成的链表上做遍历即可):

自顶向下,查找到范围的下限(3):
在这里插入图片描述
通过链表指针,遍历到元素6, 8:
在这里插入图片描述
通过链表指针,遍历到元素9, 11,遍历结束:
在这里插入图片描述

总结

B+树相比于B-树的优势:

  1. 单一节点存储更多的元素,使得查询的IO次数更少。
  2. 所有查询都要查找到叶子节点,查询性能稳定。
  3. 所有叶子节点形成有序链表,便于范围查询。

以上三点优势也说明了B+树为什么比B树更适合做数据库索引:
1)B+树的磁盘读写代价更低

B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了;

2)B+树查询效率更加稳定

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当;

3)B+树便于范围查询(最重要的原因,范围查找是数据库的常态)

B树在提高了IO性能的同时并没有解决元素遍历的我效率低下的问题,正是为了解决这个问题,B+树应用而生。B+树只需要去遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作或者说效率太低

参考:
什么是B+树
B树、B+树详解
数据库索引,终于懂了

InnoDB 中一棵 B+ 树可以存多少行数据?

### B+的数据结构及其在计算机科学中的应用 B+是一种平衡数据结构,广泛应用于计算机科学中以支持高效的插入、删除和查找操作。与B相比,B+具有独特的结构特点,使其更适合某些特定的应用场景。 #### B+的结构特点 B+的所有非叶子节点仅包含索引信息,而不存储实际数据[^2]。具体来说: - 每个节点包含多个关键字和指向子节点的指针。 - 内部节点的关键字用于引导查找路径,而叶子节点则存储实际数据记录。 - 所有叶子节点通过指针相互链接,形成一个有序链表,这使得范围查询变得高效[^2]。 #### B+的优势 1. **更高的扇出**:由于内部节点只存储索引信息,B+能够在相同的内存空间内存储更多的关键字,从而减少的高度,提高搜索效率[^2]。 2. **高效的范围查询**:通过连接的叶子节点,B+可以一次性遍历所有相关数据,而无需逐层递归访问[^2]。 3. **顺序访问优化**:由于数据在叶子节点中按顺序排列,B+非常适合需要频繁进行顺序访问的场景。 #### 计算机科学中的应用 B+因其高效性和稳定性,在许多领域得到了广泛应用: 1. **数据库管理系统(DBMS)**:B+是关系型数据库中索引实现的核心数据结构。例如,MySQL的InnoDB存储引擎使用B+来组织索引[^1]。 2. **文件系统**:现代文件系统(如NTFS、ext4)利用B+来管理磁盘块分配和文件元数据。 3. **分布式系统**:在分布式数据库和键值存储系统中,B+被用来构建分布式索引,支持大规模数据集的快速访问[^1]。 ```python # 示例代码:模拟简单的B+插入操作 class BPlusTreeNode: def __init__(self, is_leaf=False): self.keys = [] self.children = [] self.is_leaf = is_leaf def insert(self, key, value): if self.is_leaf: # 在叶子节点中插入数据 index = 0 while index < len(self.keys) and key > self.keys[index]: index += 1 self.keys.insert(index, key) self.children.insert(index, value) else: # 在非叶子节点中递归插入 child = self.children[self.find_child_index(key)] child.insert(key, value) if len(child.keys) > max_keys_per_node: self.split_child(self.find_child_index(key), child) def find_child_index(self, key): for i in range(len(self.keys)): if key < self.keys[i]: return i return len(self.keys) def split_child(self, index, child): # 分裂逻辑(简化版) pass # 创建根节点 root = BPlusTreeNode(is_leaf=True) root.insert(5, "Value for 5") root.insert(10, "Value for 10") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值