
YOLOv7安装运行保姆级教程
文章平均质量分 93
渊 羽
这个作者很懒,什么都没留下…
展开
-
基于深度学习的目标检测:Ubuntu系统+YOLOv7环境搭建+训练自己的数据集+推理(detect) ——(2)训练+推理篇
本文介绍了YOLOv7模型的完整使用流程,包括数据标注、训练和推理三个主要环节。首先详细讲解了如何使用Labelimg工具标注数据集,包括安装步骤和基本操作。随后提供了数据集划分的Python代码,将标注数据按8:2比例分为训练集和验证集。在训练环节,说明了如何修改yaml配置文件、选择权重文件以及调整训练参数。最后简要介绍了如何使用训练好的模型进行推理检测。文章提供了完整的操作流程,适合初学者快速上手YOLOv7模型的训练和应用。原创 2025-06-05 11:01:25 · 965 阅读 · 0 评论 -
基于深度学习的目标检测:Ubuntu系统+YOLOv7环境搭建+训练自己的数据集+推理(detect) ——(1)准备+测试篇
想要体验前沿目标检测模型 YOLOv7 的强大能力,并将其应用于解决实际问题?那么,环境搭建、数据集准备、模型训练与推理这几个关键环节,便是你必须迈过的门槛。对于,乃至是有一定开发经验的读者而言,从配置复杂的依赖环境,到处理特定格式的数据集,再到调试训练参数、部署模型进行预测,每一步都可能面临诸多挑战。别担心,这篇博客正是为了解决这些痛点而来。原创 2025-06-04 21:55:07 · 1024 阅读 · 0 评论