
机器学习笔记
文章平均质量分 53
丰。。
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
神经网络论文研读-多模态方向-综述研读(上)
图1:LMU印章(左)风格转移到梵高的向日葵绘画(中)并与提示混合 - 梵高,向日葵 -通过CLIP+VGAN(右)。在过去的几年中,自然语言处理(NLP)和计算机视觉中使用的方法取得了一些突破。除了对单模态模型的这些改进之外,大规模多模态方法已成为一个非常活跃的研究领域。在本次研讨会中,我们回顾了这些方法,并试图创建一个坚实的该领域的概述,从当前最先进的方法分别是深度学习的两个子领域。原创 2023-08-18 19:06:11 · 213 阅读 · 0 评论 -
报错Columns have mixed types. Specify dtype option on import or set low_memory=False
加上 low_memory=False。原创 2023-07-16 15:55:15 · 1064 阅读 · 0 评论 -
kaggle学习笔记-情感和地理空间分析
另一方面,地理空间分析是对图像、GPS、卫星摄影和历史数据的收集、显示和操作,这些数据以地理坐标明确描述,或以街道地址、邮政编码或林分标识符隐式描述。这是展示有关情感分析、地理空间分析和时间序列分析的一些混合想法的好机会。全部:具有新功能的评论:预处理文本、实体检测、分数中的新标签以及与获取区域、x、y 和餐厅名称的餐厅的连接。报道:这些餐厅(或地区)都有独特的特色,并且很有趣地看到每个餐厅(或地区)的模式多样性。分类:确定哪些评论是好的、差的或一般,以及发生这种情况的概率是多少。标记中餐厅的普遍化。原创 2023-07-14 16:30:07 · 672 阅读 · 1 评论 -
深度学习神经网络学习笔记-论文研读-transformer及代码复现参考
优势序列转导模型基于复杂的循环或包括一个编码器和一个解码器的卷积神经网络。最好的表现良好的模型还通过attention 连接编码器和解码器机制。我们提出了一种新的简单的网络架构,Transformer, 完全基于注意力机制,省去了递归和卷积完全。在两个机器翻译任务上的实验表明,这些模型可以质量优越,同时具有更强的并行性和显著的要求训练时间更少。我们的模型在WMT 2014 英语-上达到 28.4 BLEU在现有的最佳结果上有所提升,包括超过 2 个 BLEU。原创 2023-07-05 20:40:36 · 1153 阅读 · 0 评论 -
kaggle学习笔记-feedback反馈奖-baseline
这使我们能够快速使用更多提取的嵌入和更多的折叠进行训练。在这个笔记本中,我们从 5 个 NLP 转换器中提取嵌入。Giba从数十个图像CNN和图像转换器中提取嵌入。这些模型是预先训练的(最有可能在ImageNet数据上),但没有经过微调(在Kaggle竞争数据上)。这些模型是预先训练的(最有可能在ImageNet数据上),但没有经过微调(在Kaggle竞争数据上)。在他的笔记本中,他提取了 1 个 NLP 转换器嵌入,并在 CPU 上训练 Sklearn 的多输出回归器 + 梯度提升回归器,具有 5 倍。原创 2023-01-19 19:17:35 · 326 阅读 · 0 评论 -
kaggle学习笔记-otto-baseline11
一个计算购物车/订单的受欢迎程度,给定用户之前的点击/购物车/订单。一个计算给定用户以前的购物车/订单的购物车/订单的受欢迎程度。我们可以通过工程特征来改进这个模型,将它们合并到项目和用户,并训练一个重新排名模型(如 XGB)来选择我们最终的 20 个。因此,我们的任务是预测 1,671,803 个测试“用户”(即“会话”)中的每一个在未来会做什么。对于每个测试“用户”(即“会话”),我们必须预测他们在为期一周的测试期间的剩余时间内将点击、购物车和订购的内容。购物车/订单到购物车/订单的共同访问矩阵。原创 2023-01-27 21:11:25 · 184 阅读 · 0 评论 -
人工智能多模态方向学习笔记-Deep Visual-Semanti算法
Deep Visual-Semantic (DeViSE)是一种用于图像分类的算法,它使用了深度学习中的卷积神经网络 (CNN) 和词向量模型。它的主要目的是将图像和单词表示为相同的特征空间,以便可以将它们放在一起进行训练和分类。DeViSE算法的基本思想是将每个图像映射到一个固定长度的向量,这个向量被称为“视觉嵌入”(visual embedding)。同时,每个单词也被映射到一个固定长度的向量,这个向量被称为“语义嵌入”(semantic embedding)。原创 2023-03-20 18:15:05 · 612 阅读 · 0 评论 -
平均绝对值误差
和均方误差不同,平均绝对值误差更加关注预测误差的实际大小,而不是误差平方的大小。在某些应用场景中,例如异常检测等,平均绝对值误差可能比均方误差更加合适。平均绝对值误差(Mean Absolute Error,MAE)是用来评估预测模型准确度的一个指标,它是预测值和真实值之间差的绝对值的平均数。我们希望得到所有样本误差绝对值的平均数,即平均绝对值误差。由于绝对值函数的导数不连续,无法直接使用求导等方法求得最小化MAE的预测值,因此,通常采用梯度下降等优化算法来求解。, yₙ,预测值分别为ŷ₁, ŷ₂, ……原创 2023-03-20 14:11:25 · 4338 阅读 · 0 评论 -
支持向量机回归
不同的核函数对应不同的映射方式,适用于不同的问题。在SVR中,假设输入数据集为{(xi, yi)|xi∈R^n, yi∈R},其中xi是n维的特征向量,yi是对应的标签。与SVMC不同,SVMR的目标是最小化模型预测值与真实值之间的差异,即最小化预测值与真实值之间的误差平方和(Sum of Squared Errors, SSE),同时还要最大化间隔,以确保模型的泛化能力。其中,w是权重向量,b是偏置项,C是正则化参数,||w||^2是权重向量的L2范数,f(xi) = w^Txi + b是模型预测值。原创 2023-03-14 00:45:00 · 7449 阅读 · 1 评论 -
线性判别分析
(xn, yn)},其中xi∈R^d为第i个样本的特征向量,yi∈{0, 1}为第i个样本的类别标签,0表示负样本,1表示正样本。LDA算法的基本思想是将多维数据投影到一个低维空间,使得不同类别之间的距离尽可能大,同一类别内部的距离尽可能小。解出特征向量后,将其按照特征值大小从大到小排序,选择前k个特征向量作为投影方向,将原始数据投影到这些方向上,得到新的低维特征表示。将特征向量按照对应的特征值大小从大到小排序,选择前k个特征向量作为投影方向,将原始数据投影到这些方向上,得到新的低维特征表示。原创 2023-03-13 00:45:00 · 474 阅读 · 0 评论 -
随机数森林
随机森林算法是一种基于集成学习的机器学习算法,它能够有效地处理高维、复杂的数据集,并且具有很好的泛化能力。随机森林算法通过使用多个决策树来减少过拟合的风险,而每个决策树的构建都是独立的。在构建决策树时,随机森林算法使用一组随机选择的特征来进行划分,从而避免了过拟合的问题。在预测时,随机森林算法使用集成策略来预测新的样本的类别或值。随机森林算法的超参数需要仔细选择,通常需要使用交叉验证技术来进行。原创 2023-03-08 13:58:00 · 2109 阅读 · 0 评论 -
决策树算法
在对新样本进行分类或回归时,将样本特征从根节点开始依次判断,沿着树的分支向下走,直到到达叶子节点,然后将叶子节点的分类结果或回归值作为预测结果。在进行决策树的分类时,我们从根节点开始,按照划分准则递归地将样本划分到子节点中,直到达到叶子节点,将叶子节点所属的类别作为预测结果。例如,如果使用信息增益作为特征选择的标准,会倾向于选择具有较多取值的特征,因为这些特征的信息增益通常较高。这些算法在具体的实现上可能有所不同,但是它们的基本思想都是类似的,即通过特征的分裂来建立决策树模型,实现对样本的分类和预测。原创 2023-03-10 00:45:00 · 646 阅读 · 0 评论 -
感知器算法
在每次迭代中,我们可以随机选取一个错误分类的样本点来更新权重和偏置,或者按照顺序遍历所有的样本点来更新权重和偏置。可以证明,如果数据集是线性可分的,那么感知器算法一定会收敛,得到一个能够将数据集分为两类的超平面。此外,感知器还存在多个权重向量和偏置项的解,因此不同的初始权重和偏置可能会导致不同的结果。此外,感知器还存在多个权重向量和偏置项的解,因此不同的初始权重和偏置可能会导致不同的结果。被错误分类,那么我们就沿着它的负梯度方向更新权重和偏置,使得这个样本点离超平面更近,从而使得它被正确分类。原创 2023-03-08 13:24:44 · 1226 阅读 · 0 评论 -
多元线性回归
最后,需要注意的是,在实际应用中,多元线性回归模型可能存在欠拟合或过拟合的问题。针对这些问题,我们可以采取一系列方法,如添加正则化项、调整模型超参数等来提高模型的泛化能力。在多元线性回归中,我们假设自变量和因变量之间存在线性关系,并且通过最小化残差平方和来求解最优的模型参数。以上就是多元线性回归的原理说明,通过求解最小化残差平方和的模型参数,我们可以建立自变量和因变量之间的线性关系模型,从而对因变量进行预测。通过最小化残差平方和,我们可以求解出模型的最优参数,通常使用最小二乘法来求解,即将。原创 2023-03-09 00:45:00 · 1761 阅读 · 0 评论 -
SVM算法
需要注意的是,在实际应用中,我们可能会遇到非线性可分的情况,此时可以通过核函数将数据映射到高维空间,使得数据在该空间中线性可分。它的核心思想是最大化分类边界的间隔,并利用支持向量来确定最优的超平面,从而实现高效的分类。以上就是SVM算法的公式推导过程,通过最大化支持向量到分类超平面的距离,SVM算法可以在高维空间中寻找最优的分类超平面,从而实现对数据的分类。寻找最优的超平面:在给定的训练数据中,SVM算法会寻找一个最优的超平面,使得将数据分为两个类别的间隔最大化。通过求解上述对偶问题,我们可以得到最优的。原创 2023-03-09 00:30:00 · 2849 阅读 · 0 评论 -
LVQ算法
LVQ算法主要是通过对数据进行聚类来实现分类,其核心思想是通过逐步调整聚类中心,使得不同类别之间的距离变大,同一类别之间的距离变小。LVQ算法的核心思想是通过逐步调整聚类中心,使得不同类别之间的距离变大,同一类别之间的距离变小,从而实现分类任务。LVQ(Learning Vector Quantization)算法的核心是通过逐步调整聚类中心,来使不同类别之间的距离变大,同一类别之间的距离变小。这样,经过多次迭代后,不同类别之间的距离将逐步变大,同一类别之间的距离将逐步变小,从而实现分类任务。原创 2023-03-07 20:00:33 · 1066 阅读 · 0 评论 -
KNN算法
其原理是在给定的数据集中,根据某个距离度量方法,将测试数据与已知数据集中的所有数据进行距离计算,然后选取K个距离最近的数据作为测试数据的邻居,根据邻居的类别进行投票,将测试数据分类到得票最多的类别中。总之,KNN算法是一种简单而有效的分类方法,它不需要对数据进行训练,可以适用于多种数据类型和应用场景,并且可以通过调整K值或距离阈值等参数来控制算法的复杂度和性能。,KNN算法需要找到K个距离测试样本最近的训练样本,计算它们的类别,并将测试样本归入到得票最多的类别中。则取值为1,否则为0,表示邻居中属于类别。原创 2023-03-07 19:53:43 · 1803 阅读 · 0 评论 -
kaggle学习笔记-otto-baseline10-实现拉狄克简单共访矩阵极坐标
由于一个辅助(例如,“122”)可以有许多配对伙伴,通过计算配对(“122”,配对伙伴)的出现次数,我们能否找到援助“122”最常见的配对伙伴?从候选列表中选择 40 种最常见的辅助工具,如果它们是新参加会话的,请将它们添加到测试会话的辅助工具中。下一次点击、购物车或订单可能是测试会话的最后一次辅助(或所有辅助)最常见的配对伙伴吗?在测试会话中为每种辅助工具选取 20 种最常见的辅助工具,并将它们放入候选列表中。我们能否为每个会话将辅助工具配对在一起并计算配对的次数?在拉狄克的笔记本中,配对逻辑如下。原创 2023-01-19 12:43:00 · 1167 阅读 · 0 评论 -
kaggle学习笔记-otto-baseline9-使用事件的观测概率作为评级
同样,对于任何特定产品/辅助工具的session_carts:评级 = p(aid|carts|clicks) {这是因为观察到产品已在购物车中的实例}在此笔记本中 - 对于任何给定的项目评级 =(该点的累积分布)*(项目触发事件的次数)/(会话中特定事件的总数)例如:对于任何特定产品/辅助工具的session_clicks:评级 = p(aid|click),对于任何特定产品/辅助session_orders:评级 = p(aid|订单|购物车|点击)用户首先点击产品以获取详细信息。原创 2023-01-16 19:39:52 · 223 阅读 · 0 评论 -
kaggle学习笔记-otto-baseline8-候选生成 + LGBM 排名器模型
我们尝试开发一个两阶段模型,其中包括候选生成模型(共同访问矩阵)和排名模型。这种做法自候选人一代以来在大型科技公司中广泛使用应该注意的是,候选生成模型应以高召回率为目标,而排名模型应以最相关的项目为目标,首先对最相关的项目进行排名。步骤一:模型训练步骤 1.1 - 加载训练数据此笔记本中的训练数据由以下逻辑提取:train_df = train_df[train_df['session']%10 == 1]训练数据的标签存储在 test_labels.parquet 中,其中包含训练和测原创 2023-01-09 14:53:46 · 3087 阅读 · 3 评论 -
kaggle学习笔记-otto-baseline7-用户/项目协同过滤集成
协调过滤算法原理说明协同过滤本文显示了基于用户的 CF 和基于项的 CF 的朴素集合。当然,在这次比赛中,用户可以被视为会话,将项目视为辅助工具。因此,我们将提取两个不同的相似性矩阵:第一个计算会话对之间的相似性,另一个计算辅助工具对之间的相似性。最终,最终模型是基于会话的 CF 和基于援助的 CF 之间的加权和的结果。鉴于大量的会话和项目,我们将计算绑定到前一周开始的与测试集相关的会话。因此,如果我们的训练集在 4 周内拆分,为了简单起见,我们认为只有最后一周可用。原创 2022-12-30 00:25:03 · 795 阅读 · 0 评论 -
kaggle学习笔记-otto-baseline6-使用 RAPIDS TSNE 和项目矩阵分解可视化用户行为
在Kaggle的Otto推荐系统竞赛中,项目ID是匿名的。所以我们不知道每个项目 id 指的是哪个。但是,通过项目矩阵分解,我们可以将匿名项目 ID 转换为有意义的嵌入。那么类似的嵌入将是类似的项目。如果我们将嵌入投影到 2D 平面(使用 TSNE、UMAP、PCA 等)并绘制它们,我们可以看到类似项目的集群。然后一个集群可能是服装,另一个集群可能是电子产品等。使用项目嵌入的 2D 平面,我们可以绘制点和线,显示每个用户活动的进展。这使我们能够了解用户如何购物。原创 2022-12-28 21:58:35 · 365 阅读 · 0 评论 -
kaggle学习笔记-otto-baseline5-LGBM的使用
我们现在有了预处理的数据集,一个具有基本信息的列,这意味着我们的 Ranker 唯一缺少的是…如何将各个行分组到会话中的信息。现在我们需要稍微处理一下我们的标签,并将它们合并到我们的训练集中。原创 2022-12-28 20:59:01 · 453 阅读 · 0 评论 -
推荐系统学习笔记-推荐系统数据流
数据流(data stream)是一组有序,有起点和终点的字节的数据序列。包括输入流和输出流。数据流最初是通信领域使用的概念,代表传输中所使用的信息的数字编码信号序列。这个概念最初在1998年由Henzinger提出,他将数据流定义为“只能以事先规定好的顺序被读取一次的数据的一个序列”。原创 2022-12-21 19:50:13 · 886 阅读 · 0 评论 -
推荐系统学习笔记-基于图的模型
推荐系统学习笔记原创 2022-12-17 21:14:02 · 948 阅读 · 0 评论 -
推荐系统学习笔记-隐语义模型
推荐系统学习笔记原创 2022-12-17 21:07:44 · 903 阅读 · 0 评论 -
推荐系统学习笔记-基于领域的推荐算法
推荐系统学习笔记原创 2022-12-16 22:23:12 · 392 阅读 · 0 评论 -
推荐系统学习笔记--推荐系统简介
推荐系统学习笔记原创 2022-12-15 22:45:25 · 866 阅读 · 0 评论 -
推荐系统学习笔记-论文研读--点击率预估中特征交互的作用
推荐系统论文研读原创 2022-12-13 23:08:01 · 1582 阅读 · 0 评论 -
KAGGLE 比赛学习笔记---OTTO---baseline解读3-使用手工规则的候选重新排序模型
kaggle比赛笔记第一轮原创 2022-12-07 14:52:47 · 1150 阅读 · 0 评论 -
KAGGLE 比赛学习笔记---OTTO---baseline解读2-时间维度的数据解读
kaggle比赛笔记第一轮原创 2022-12-07 14:23:18 · 764 阅读 · 0 评论 -
KAGGLE 比赛学习笔记---OTTO---baseline解读1-数据解读
kaggle比赛笔记第一轮原创 2022-12-07 14:02:30 · 942 阅读 · 0 评论 -
KAGGLE比赛分享-细胞赛(一)
KAGGLE比赛1原创 2022-11-13 15:42:13 · 533 阅读 · 0 评论 -
深度学习学习笔记-神经网络论文研读-pix2pix
概念引入gan的通俗理解摘要1.研究条件生成式对抗网络在图像翻译任务中的通用解决方案2.网络不仅学习从输入图像到输出图像的映射,还学习了用干训练该映射的损失函数3.证明了这种方法可以有效应用在图像合成、图像上色等多种图像翻译任务中4.使用作者发布的pix2pix软件,大量用户已经成功进行了自己的实验,进一步证明了此方法的泛化性5. 这项工作表明可以在不手工设计损失函数的情况下,也能获得理想的结果研究背景图像翻译问题图像翻译技术能够将图像中内容从一个图像域X转换到另一个图像域Y,可以看作是原创 2022-05-06 10:46:45 · 347 阅读 · 1 评论 -
强化学习学习笔记-时间差分算法
概述时序差分算法是一种无模型的强化学习算法。它继承了动态规划(Dynamic Programming)和蒙特卡罗方法(Monte Carlo Methods)的优点,从而对状态值(state value)和策略(optimal policy)进行预测概念引入自举法我们的项目并不总是有充足的数据。通常,我们只有一个样本数据集可供使用,由于缺乏资源我们无法执行重复实验(例如A/B测试)。幸运的是,我们有重采样的方法来充分利用我们所拥有的数据。自举法(Bootstrapping)是一种重采样技术。理想情原创 2022-04-20 10:59:52 · 638 阅读 · 0 评论 -
SVD奇异值分解通俗理解-机器学习学习笔记
概念引入矩阵A的大小为m*n如图以此类推图中的∑为S,S是对角阵(只有对角阵上是有元素的)以图上的矩阵A为例,我们可以将他分成三个矩阵相乘的形式先在X轴上做变换这是在X,Y轴上同时做了变换特征值越大,对变换的影响也就越大,比如上图中的蓝色箭头,是图中以几何形式影响最大的特征值不是所有的特征值都要处理,那样会使得情况无穷无尽(试想一下把矩阵A分成N种情况),我们挑选影响较大的就可以了,在上图中,就表现为把前r个特征值表现出来,经过这样的分解,我们成功把矩阵A分成了三块,它的几何形状由上原创 2022-01-20 18:32:56 · 3903 阅读 · 1 评论 -
NLP学习笔记-浅谈对话系统
本文目录引子概念引入生成式对话检索式对话任务完成型对话引子图灵测试(The Turing test)由艾伦·麦席森·图灵提出,指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。进行多次测试后,如果机器让平均每个参与者做出超过30%的误判,那么这台机器就通过了测试,并被认为具有人类智能。图灵测试一词来源于计算机科学和密码学的先驱艾伦·麦席森·图灵写于1950年的一篇论文《计算机器与智能》,其中30%是图灵对2000年时的机器思考能力的一个预测,我们已远远落后于原创 2021-10-26 16:34:18 · 1325 阅读 · 2 评论 -
自然语言处理学习笔记,使用SVM进行文本分类
导入包并打开数据看看#SVM文本分类import codecsimport osimport jiebatrain_file='cnews.train.txt' # training data file name test_file='cnews.test.txt' # test data file namevocab='cnews_dict.txt' # dictionarywith codecs.open(train_file, 'r', 'utf-8') as f:原创 2021-09-20 21:56:17 · 2456 阅读 · 12 评论 -
深度学习神经网络论文研读-自然语言处理方向-elctra
深度学习神经网络论文研读-自然语言处理方向-elctra-目录概念引入ELECTRA比BERRT快的原因摘要elctra的判别器与生成器模型训练其他训练方式效果比较论文意义概念引入该篇论文对GAN有要求,对GAN不熟悉的朋友,可以先看这篇博文简单理解下MASK机制的简单理解有关NLP的一些基本概念详见ELECTRA比BERRT快的原因背景当今的SOTA的预训练语言模型,比如BERT,采用Mask language model(MLM)的方式破坏输入的内容,通过双向语言模型进行预测重构;然而原创 2021-08-04 20:41:02 · 2660 阅读 · 0 评论 -
对抗生成神经网络-GAN通俗理解
对抗生成神经网络-GAN通俗理解概念引入对抗生成神经网络效果的演变由来简介生成模型判别器工作原理损失函数--交叉熵损失函数(BCE)拓展-DCGAN网络架构概念引入超分辨率重构图像超分辨率重构(super resolution,SR)是指利用计算机将一幅低分辨率图像(low resolution,LR)或图像序列进行处理,恢复出高分辨率图像(high resolution,HR)的一种图像处理技术。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用 。原理:让计算机同原创 2021-08-03 16:27:18 · 5946 阅读 · 0 评论