用matplotlib显示一下MNIST数据集中手写数字的真实面目

本文介绍了MNIST数据集,这是一个包含手写数字图片的入门级计算机视觉数据集,用于评估机器学习算法性能。数据集分为6万条训练样本和1万条测试样本,通过展示部分手写数字图像及其标签,直观呈现了数据集的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MNIST 是一个入门级计算机视觉数据集,包含了很多手写数字图片。MNIST是一个手写数字图像的数据集,每幅图像都由一个整数标记。它主要用于机器学习算法的性能对标。深度学习算法处理MNIST的效果相当好。

MNIST数据集包含一个有6万个样例的训练集和一个有1万个样例的测试集。训练集用于让算法学习如何准确地预测出图像的整数标签,而测试集则用于检查已训练网络的预测有多准确。

那么MNIST图片是什么呢?让我们看看手写字体什么样子吧。

#!/usr/bin/env python
import os
import tensorflow as tf
import matplotlib.pyplot as plt

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.compat.v1.enable_eager_execution()

print("TensorFlow Version:\t", tf.__version__)

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

fig, ax = plt.subplots(nrows=10, ncols=10, sharex='all', sharey='all')
ax = ax.flatten()
for i in range(100):
    img = x_train[i].reshape(28, 28)
    ax[i].imshow(img, cmap='Greys', interpolation='nearest')
ax[0].set_xticks([])
ax[0].set_yticks([])
plt.tight_layout()
plt.show()

看看数字,歪歪斜斜的,很不好认啊。下面我们再把标签加上,来看看真实面目。。

#!/usr/bin/env python
import os
import tensorflow as tf
import matplotlib.pyplot as plt

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.compat.v1.enable_eager_execution()

print("TensorFlow Version:\t", tf.__version__)

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

fig, ax = plt.subplots(nrows=5, ncols=5, sharex='all', sharey='all')
ax = ax.flatten()
for i in range(25):
    img = x_train[i].reshape(28, 28)
    ax[i].set_title(y_train[i])
    ax[i].imshow(img, cmap='Greys', interpolation='nearest')
ax[0].set_xticks([])
ax[0].set_yticks([])
plt.tight_layout()
plt.show()

不管你是否认识,这就是标签,说了算数的~~~

上面红框里面的数字“5”,谁认识?别忘记告诉我啊。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值