28、隐私保护与效用保留图发布的通用框架

隐私保护与效用保留图发布的通用框架

在社交网络分析中,图数据的发布面临着隐私保护和效用保留的双重挑战。传统的图数据发布方法往往侧重于隐私保护,而对效用保留的考虑不足。本文将介绍一种细粒度调整框架,旨在解决这一问题,实现隐私保护和效用保留的平衡。

1. 图数据隐私保护的初步探讨

在图数据的隐私保护方面,一些基本的学习技术主要分析每个节点的直接邻居(1 - 跳邻域)。对于更复杂的情况,若使用保守节点u的x - 跳邻域进行数据挖掘,一种简单的扩展方法是在关联破坏和影响保留过程中,确保u的x - 跳邻域内没有节点与u具有相同的标签(u的x - 跳邻域中未出现的标签数量至少为一定值)。这种方法虽然能保证隐私保护目标,但发布图的效用可能较低,因为与u标签相同的节点不会出现在其x - 跳邻域内。

2. 通用框架的动机

以往的工作倾向于发布能保证一定隐私保护且对原始图改动最小的图,但对发布图中效用的保留缺乏保证,仅提供了一些经验性结果。然而,保留效用是发布图的初衷,因此需要一个通用框架来根据数据发布者的定制偏好,在隐私和效用之间进行权衡。

我们提出了一个细粒度调整框架来发布隐私保护和效用保留的图,该框架包含三个参数:
- 隐私要求:指定需要保护的隐私内容。
- 效用要求:声明需要保留的效用。
- 发布者对权衡的偏好。

框架使用“冲突提取器”分析隐私和效用要求,找出冲突核心,这些冲突核心代表了隐私要求和效用要求之间的冲突点。然后,“分析器”会分析冲突核心,根据发布者的偏好找到最佳策略,对隐私/效用要求进行放松,重复此过程直到得到满意的结果。

3. 以加权图发布为例的框架实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值