人工智能中Unity的力量

Since 2018, Cross Compass has integrated Unity into the pipeline of several of its consulting services for the manufacturing field to train and validate AI algorithms safely before deployment. Read on to learn how this AI company came to use gaming technology to add value to such a mature industry.

自2018年以来,Cross Compass已将Unity集成到其多个制造领域咨询服务的产品线中,以在部署之前安全地训练和验证AI算法。 请继续阅读以了解这家AI公司如何开始使用游戏技术为如此成熟的行业增值。

Cross Compass is a leading AI company providing state-of-the-art solutions to global industry leaders in manufacturing, robotics, gaming, healthcare, design, and marketing. Established in Tokyo in 2015, Cross Compass develops cutting-edge techniques in Deep Learning, Machine Learning, and Artificial Life, to increase safety, quality, and productivity for the benefit of society.

Cross Compass是一家领先的AI公司,为制造,机器人,游戏,医疗保健,设计和营销方面的全球行业领导者提供最先进的解决方案。 Cross Compass于2015年在东京成立,致力于开发深度学习,机器学习和人工生命方面的尖端技术,以提高安全性,质量和生产率,造福社会。

We invited them to share in their own words why they embraced Unity and how it helps them deliver the following benefits:

我们邀请他们用自己的话分享他们为什么接受Unity以及它如何帮助他们带来以下好处:

    Learn more in this guest post from Cross Compass by Romain Angénieux, AI Simulation Group Leader; Steven Weigh, Global Brand Identity Designer; and Antoine Pasquali, Chief Technology Officer.

    AI模拟小组组长RomainAngénieux在Cross Compass的客座文章中了解更多信息; 全球品牌识别设计师Steven Weigh; 以及首席技术官Antoine Pasquali。

    在制造环境中引入AI的挑战 (Challenges in introducing AI for manufacturing environments)

    Designing and deploying cutting-edge AI solutions for manufacturing environments is a complicated process. Manufacturing production lines have been meticulously optimized and perfected for decades. Experts have designed, tweaked, and iterated upon every detail end-to-end, to ensure the highest efficiency, safety, and quality standards that meet strict industry requirements and tight delivery schedules. This results in zero room for experimentation, disruption, risk, or unproven methods.

    为制造环境设计和部署最先进的AI解决方案是一个复杂的过程。 制造生产线经过精心优化和完善已有数十年的历史。 专家对端到端的每个细节进行了设计,调整和迭代,以确保满足严格的行业要求和严格的交货时间表的最高效率,安全性和质量标准。 这导致实验,中断,风险或未经验证的方法的零空间。

    AI by comparison, is evolving at lightspeed. Every other day brings new research on the latest methods, expanded possibilities, and new frontiers. However, most of this research, only exists in the lab, built upon carefully curated data that bears little resemblance to the noisy, unstructured, unlabeled, or as is often the case, the complete absence of data that exists in the real world. In stark contrast to manufacturing, AI rarely takes the time to validate itself under real-world conditions. The two industries couldn’t be further apart in their approaches.

    相比之下,人工智能正在以光速发展。 每隔一天就会带来有关最新方法,扩展可能性和新领域的新研究。 但是,大多数研究仅存在于实验室中,建立在精心挑选的数据基础之上,这些数据与嘈杂的,无结构的,无标签的(或通常情况下)完全不存在现实世界中的数据几乎没有相似之处。 与制造业形成鲜明对比的是,人工智能很少花时间在现实条件下进行自我验证。 这两个行业在方法上无法分开。

    In a lab, reaching 99% accuracy is a laudable achievement. In the manufacturing environment, a remaining 1% error rate is an unacceptably high failure, defect, or safety risk that can have severe real-world consequences. Given this dichotomy, how might we introduce the latest AI solutions into such a precise, constrained environment? And how might we experiment with, validate and deploy AI solutions in a way that doesn’t introduce risk, cost, downtime, or some combination of all three? These are the questions we were asking ourselves when tasked with training and deploying AI on our clients’ factory floors.

    在实验室中,达到99%的准确度是一项值得称赞的成就。 在制造环境中,剩余的1%错误率是不可接受的高故障,缺陷或安全风险,可能会对现实世界造成严重后果。 鉴于这种二分法,我们如何将最新的AI解决方案引入如此精确,受约束的环境中? 以及我们如何以不引入风险,成本,停机时间或这三者并存的方式试验,验证和部署AI解决方案? 这些是我们在客户工厂车间培训和部署AI时遇到的问题。

    使用仿真开发AI解决方案 (Using simulation to develop AI solutions)

    The most obvious solution was to bring the manufacturing environment into the lab. That is, to recreate the factory floor in a simulated environment where we can develop our AI solutions without fear of downtime or damaging state-of-the-art equipment.

    最明显的解决方案是将制造环境引入实验室。 也就是说,在模拟环境中重新创建工厂车间,我们可以在其中开发我们的AI解决方案,而不必担心停机时间或损坏最先进的设备。

    A simulated environment gives us total control over factory conditions, allowing us to change parameters, experiment with, disrupt, and validate our algorithms in order to investigate new AI solutions. In other words, simulation lets us do all the things we can’t do in the real world.

    模拟环境使我们能够完全控制工厂条件,从而可以更改参数,进行实验,破坏和验证算法,以研究新的AI解决方案。 换句话说,模拟使我们能够完成现实世界中无法做的所有事情。

    我们如何选择Unity (How we chose Unity)

    In 2018, we conducted an analysis of the solutions on the market in order to determine which technology would best match our needs in terms of simulation.

    在2018年,我们对市场上的解决方案进行了分析,以确定哪种技术在仿真方面最符合我们的需求。

    The goal was to make it easier, faster, and safer to set up the environment, to collect the data, and to validate the AI’s performance before deploying it on the physical robot.

    目标是在将环境部署到物理机器人上之前,使设置环境,收集数据以及验证AI的性能变得更加轻松,快捷和安全。

    We began by examining robot-specific engines designed to simulate robot’s behaviors, joints properties and dependencies, and sensors. These engines are extremely accurate in terms of physics, behavior control and low-level robotics. However, and despite their strong attachment to realism, we found that these engines lacked the flexibility to recreate more complex scenes.

    我们首先检查专门用于模拟机器人行为,关节属性和依存关系以及传感器的机器人专用引擎。 这些引擎在物理,行为控制和低级机器人方面都非常精确。 但是,尽管它们强烈依赖于现实,但我们发现这些引擎缺乏重新创建更复杂场景的灵活性。

    演示地址

    Meteorological Domain Randomization (MDR) for robotic applications. We make use of Unity’s High Definition Render Pipeline (HDRP) and the Shader Graph workflow to create variations in sky conditions, lights, backgrounds, and object textures. (Courtesy of Cross Compass)

    机器人领域的气象领域随机化(MDR)。 我们利用Unity的高清渲染管线 (HDRP)和“明暗器图形”工作流程来创建天空条件,灯光,背景和对象纹理的变化。 (由交叉罗盘提供)

    In the context of AI, although we indeed require accurate physics and perfect control over the robot’s behaviors, we also need to import a wide range of objects of different shapes, with realistic textures and visuals, such as lights, shadows, camera effects, and so on.

    在AI的背景下,尽管我们确实需要精确的物理特性和对机器人行为的完美控制,但我们还需要导入各种形状不同的对象,并具有逼真的纹理和视觉效果,例如灯光,阴影,相机效果和以此类推。

    Here, we discovered that game engines responded well to this variety of demands, as they offer simple answers to these other constraints. Robot manipulation would still be possible at a higher level of control, which matched our strategy of developing hardware agnostic solutions.

    在这里,我们发现游戏引擎可以很好地响应各种需求,因为它们可以为这些其他约束提供简单的答案。 在更高的控制水平上仍可以进行机器人操纵,这与我们开发硬件不可知解决方案的策略相匹配。

    Notably, Unity allowed us to focus on creating only the features needed for training AIs on robots, while leaving the rest to the engine. To save development time, we could directly rely on its existing file importer, rendering system, physics engine, script lifecycle, scheduler, and deployment options.

    值得注意的是,Unity使我们能够专注于仅创建在机器人上训练AI所需的功能,而其余的则留给引擎。 为了节省开发时间,我们可以直接依赖其现有的文件导入器,渲染系统,物理引擎,脚本生命周期,调度程序和部署选项。

    In addition, Unity offers regular updates as well as contributions from collaborators to tailor the engine to more advanced applications such as our own. The active support of Unity’s ecosystem would ensure that any potential issue would be addressed properly.

    此外,Unity还提供定期更新以及合作者的贡献,以使引擎适合更高级的应用程序,例如我们自己的应用程序。 Unity生态系统的积极支持将确保适当解决任何潜在问题。

    At the end of our analysis, Unity emerged as our best option for its versatility and evolvability.

    在我们的分析结束时,Unity因其多功能性和可扩展性而成为我们的最佳选择。

    我们如何使用Unity将AI带入制造自动化 (How we use Unity to bring AI to manufacturing automation)

    Today, Unity developments are fully integrated into our processes for manufacturing automation. On the research side, we create diverse scenes, ranging from picking to navigation to adaptive control based on sensor feedback, to test the robustness of our AI algorithms under unexpected conditions, and to advance our technology further into uncharted territory.

    今天,Unity开发已完全集成到我们的制造自动化流程中。 在研究方面,我们创建了各种场景,从拾取到导航再到基于传感器反馈的自适应控制,以测试我们的AI算法在意外情况下的鲁棒性,并将我们的技术进一步推向未知领域。

    Each research project originates from a client’s need and is then expanded toward a more general solution to address similar cases. We integrate these solutions one after the other in our main simulation environment as packaged assets, so as to maintain a continuous development workflow, compatibility over time, and clean code.

    每个研究项目都源于客户的需求,然后扩展为针对类似案例的更通用解决方案。 我们将这些解决方案作为打包资产逐一集成在我们的主要仿真环境中,以保持连续的开发工作流,长期的兼容性和简洁的代码。

    Since we started using Unity, we have mainly developed features for importing objects and robot parts, creating realistic scenes, and applying domain randomization techniques. In parallel, we have established communication protocols with our AIs and with third-party robotic software, as well as different simulation configurations for data generation, AI training, testing, and validation in real time for all scenes.

    自从我们开始使用Unity以来,我们主要开发了用于导入对象和机器人零件,创建逼真的场景以及应用域随机化技术的功能。 同时,我们与AI和第三方机器人软件建立了通信协议,并为所有场景实时提供了用于数据生成,AI训练,测试和验证的不同仿真配置。

    Unity offers the required flexibility for such expert developments, such as a calculation of physics independent from the simulation speed, which allows generating accurate data a hundred times faster than what the eye can see. The Asset Store and tools from Unity partners also provide us with occasional tweaks and features for faster progression.

    Unity为此类专家开发提供了所需的灵活性,例如独立于仿​​真速度的物理计算,这使得生成准确的数据的速度比眼睛看到的速度快一百倍。 Unity合作伙伴的Asset Store和工具还为我们提供了一些偶尔的调整和功能,以加快进度。

    Unity has allowed us to significantly reduce the time and cost involved in training, testing, and deploying AI solutions to our clients and partners. The result is higher levels of safety, an increase in the value of human intervention on the factory floor, and a higher quality product delivered to end users. Unity’s physics engine and features allow us to control every aspect of the simulated factory floor, resulting in more precise and robust AI solutions than ever before.

    Unity使我们能够大大减少培训,测试和为客户和合作伙伴部署AI解决方案所需的时间和成本。 结果是更高的安全性,增加了对工厂车间人为干预的价值,并向最终用户交付了更高质量的产品。 Unity的物理引擎和功能使我们能够控制模拟工厂车间的各个方面,从而提供比以往更精确,更强大的AI解决方案。

    Here is a common workflow for using Unity in our projects:

    这是在我们的项目中使用Unity的常见工作流程:

    AI解决方案样机 (AI solution mockup)

    On consulting projects, we create branches of our main Unity environment, where we can work freely to meet the specific needs of clients, later merging the added features back to the main branch. Typically, we would start by making a mockup of the solution by selecting and customizing a preconfigured scene with our relevant assets. Showing a demo in simulation to clients helps clarify the specifications of the project as well as its end goal in terms of deployment in the factory.

    在咨询项目中,我们创建主Unity环境的分支,我们可以在其中自由工作以满足客户的特定需求,然后将添加的功能合并回主分支。 通常,我们将通过选择和自定义具有相关资产的预配置场景来制作解决方案的模型。 向客户展示模拟演示,有助于弄清项目的规格及其最终目标(在工厂中的部署)。

    人工智能培训与测试 (AI training and testing)

    We then prepare the environment and the AI for training. Simulation affords us the luxury of data generation, whereby we generate data in a much faster, safer, and flexible manner than real-world collection would allow. Only AI experts can tell the relevant information to get from the simulation; however, the data labeling is obtained for free. This means that we can provide the AI with any data, with the highest precision, whereas in the real world, the same data might be hard or even impossible to gather. Further, there is no limit to the amount of data generated.

    然后,我们准备环境和AI进行培训。 仿真为我们提供了豪华的数据生成功能,通过这种方式,我们可以比现实世界中的集合更快,更安全,更灵活地生成数据。 只有AI专家才能告诉相关信息以从模拟中获取信息; 但是,数据标签是免费获得的。 这意味着我们可以为AI提供最高精度的任何数据,而在现实世界中,相同的数据可能很难收集甚至无法收集。 此外,对生成的数据量没有限制。

    演示地址

    Domain randomization applied to the visual input of the AI. MDR techniques are applied in simulation to ensure the AI performs effectively under real-world conditions. (Courtesy of Cross Compass)

    域随机化应用于AI的视觉输入。 MDR技术应用于仿真中,以确保AI在实际条件下有效执行。 (由交叉罗盘提供)

    At this point, we test our models and fine-tune their accuracy up to the client specified margin of error to ensure a robust final solution. For this, we need to train our AIs so that they are effective in the real world, under unexpected variations of light and noise received by cameras and other sensors. Our packaged asset for domain randomization was specifically designed to bridge this gap. We then validate our AIs in real-time simulation. This is also used to demo the AI solution to clients.

    在这一点上,我们测试模型并调整其精度,直至达到客户指定的误差范围,以确保可靠的最终解决方案。 为此,我们需要训练我们的AI,使其在现实世界中有效,在照相机和其他传感器接收到的光和噪声意外变化的情况下。 我们用于域随机化的打包资产是专门为弥合这一差距而设计的。 然后,我们在实时仿真中验证我们的AI。 这也用于向客户端演示AI解决方案。

    部署方式 (Deployment)

    Finally, we deploy to the factory. Our robotics engineers, with the assistance of system integrators, prepare, depending on the number of deployment items, either a test bench or the final system directly at the customer’s site. AI engineers operate the first tests, and typically a member of our simulation team visits as well to verify the conformity with the simulated scene used for training. This allows for quick adjustments, if necessary, before shipping the final AI, trained on a much larger dataset, before finally instructing the factory technicians on how to use their newly acquired AI algorithms.

    最后,我们部署到工厂。 我们的机器人工程师在系统集成商的帮助下,根据部署项目的数量,直接在客户现场准备测试台或最终系统。 AI工程师会进行首次测试,并且通常我们的模拟团队的成员也会进行访问,以验证其与用于训练的模拟场景的一致性。 这样可以在必要时进行快速调整,然后再交付最终的AI(在更大的数据集上进行训练),然后最终指导工厂技术人员如何使用其新获取的AI算法。

    下一步是什么? (What’s next?)

    演示地址

    Evolution of our picking solution across versions 1.0 to 3.0. Version 1 replicated realistic physics conditions when picking objects from the bucket. Version 2 focused on simulating the robot and the grippers. The MDR was then developed and applied in Version 3. The AI techniques were also perfected throughout each version, as can be seen in the camera widgets. (Courtesy of Cross Compass)

    我们的拣货解决方案在1.0到3.0版本之间的演变。 第1版复制了从存储桶中拾取对象时的现实物理条件。 版本2专注于模拟机器人和抓手。 然后开发了MDR,并将其应用到版本3中。从相机小部件中可以看出,整个每个版本的AI技术也都得到了完善。 (由交叉罗盘提供)

    Unity is a work in progress just as much as our own development is, and our code-base and processes are improving with each new project. We haven’t yet faced a challenge that we can’t meet using Unity and our expertise.

    就像我们自己的开发一样,Unity仍在进行中,并且随着每个新项目的进行,我们的代码库和流程都在不断完善。 我们尚未面临使用Unity和我们的专业知识无法应付的挑战。

    -

    Learn more about Cross Compass’ work with Unity here.

    在此处了解有关Cross Compass与Unity合作的更多信息。

    Start training, testing, and validating your AI algorithms using Unity Simulation.

    使用Unity Simulation开始训练,测试和验证AI算法。

    翻译自: https://blogs.unity3d.com/2020/07/24/the-power-of-unity-in-ai/

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值