
YOLO11创新改进
文章平均质量分 95
YOLO11改进实战,手把手教程,原创改进创新,涨点效果明显,基于11最新版本优化
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
会AI的学姐
学姐带你学AI,玩转YOLO!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO11改进:注意力改进| 新颖的双注意力块(DAB)融合(全局通道注意力、局部通道注意力和空间注意力)
我们提出了一种新的并行注意力架构,通过并行连接三种不同的注意力机制(全局通道注意力、局部通道注意力和空间注意力),实现了更好的去雾效果。原创 2025-07-01 14:07:49 · 173 阅读 · 0 评论 -
YOLO11改进:轻量化改进 | 单头注意力模块,并行结合全局和局部信息提高准确度| SHViT CVPR2024
引入了一个单头注意力模块,它固有地防止了头部冗余,同时通过并行结合全局和局部信息来提高准确性原创 2025-06-23 13:56:45 · 50 阅读 · 0 评论 -
YOLO11改进:多尺度提取能力 | 大内核和倒瓶颈设计CMUNeXt,高效提取全局上下文信息
如何使用:1)替换YOLO11 C3k2,实现二次创新,具备多尺度能力;原创 2025-06-16 09:52:27 · 222 阅读 · 0 评论 -
YOLO11改进:多尺度提取能力 | 全局到局部可控感受野模块GL-CRM ,量身为为多尺度变化而设计
结合YOLO11 C3k2,实现二次创新,具备多尺度提取能力原创 2025-06-13 09:54:45 · 186 阅读 · 0 评论 -
YOLO11改进:注意力独家魔改 | 可变形双级路由注意力(DBRA) | 2024年10月最新
作为注意力可变形双级路由注意力(DBRA)模块使用;原创 2025-01-10 13:21:24 · 230 阅读 · 0 评论 -
YOLO11改进:注意力魔改 | 具有切片操作的SimAM注意力,魔改SimAM
SimAM计算整张特征图的像素差平均值时加权可能会忽略小目标的重要性,同时与整体平均值相比可能和背景信息相似,导致加权增强较弱;原创 2025-01-10 13:17:08 · 133 阅读 · 0 评论 -
YOLO11改进:注意力魔改 | 一种新颖的高效融合注意力机制,2024年最新发表
提出了一种新颖的高效融合注意力机制,增强了模型的特征提取能力,同时减少通道和空间位置的冗余原创 2025-01-10 13:12:09 · 179 阅读 · 0 评论 -
YOLO11改进:注意力魔改 | 一种新的空间和通道协同注意模块(SCSA) | 2024年8月最新成果
提出了一种新的空间和通道协同注意模块(SCSA),解决了缺乏充分利用多语义信息的协同潜力来进行特征引导和缓解语义差异的问题。原创 2025-01-10 13:01:16 · 112 阅读 · 0 评论 -
YOLO11改进:注意力魔改 | 蒙特卡罗注意力(MCAttn)模块,基于尺度变化的注意力网络
提出了一种新的基于尺度变化的注意力网络,用于小尺度目标检测分割。原创 2025-01-10 12:56:58 · 213 阅读 · 0 评论 -
YOLO11改进:backbone主干改进 | 微软新作StarNet:超强轻量级Backbone | CVPR 2024
如何跟YOLO11结合:1)直接替换backbone原创 2025-01-10 10:44:44 · 410 阅读 · 0 评论 -
YOLO11改进:卷积魔改 | 变形条状卷积,魔改DCNv3二次创新
如何跟YOLO11结合:1)和C3k2创新性结合原创 2025-01-10 10:41:14 · 129 阅读 · 0 评论 -
YOLO11改进:特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合, IEEE TIP 2024 浙大
提出了一种基于内容引导注意力(CGA)的混合融合方案,将编码器部分的低级特征与相应的高级特征有效融合。原创 2025-01-10 10:26:01 · 172 阅读 · 0 评论 -
YOLO11改进:轻量级改进 | 通用倒瓶颈(UIB)搜索块结合C3k2二次创新 | 轻量化之王MobileNetV4
通用倒瓶颈(UIB)搜索块替代YOLO11的C3k2原创 2025-01-10 10:17:40 · 112 阅读 · 0 评论 -
YOLO11改进:backbone主干改进| 轻量化之王MobileNetV4,秒杀Mobile系列
轻量化之王MobileNetV4,秒杀Mobile系列原创 2025-01-10 10:13:51 · 140 阅读 · 0 评论 -
YOLO11改进:卷积变体系列篇 |动态卷积 DynamicConv, CVPR2024 ParameterNet 低计算量小模型也能从视觉大规模预训练中获益
动态卷积引入到YOLO11,直接替换原始的Conv操作:原创 2025-01-10 10:09:16 · 156 阅读 · 0 评论 -
YOLO11改进:小目标涨点篇 | 维度感知选择性集成注意力模块DASI,红外小目标暴力涨点
小目标实现暴力涨点,只有几个像素的小目标识别率提升明显原创 2025-01-10 10:02:58 · 206 阅读 · 0 评论 -
YOLO11改进:小目标涨点系列 | 并行化注意力设计(PPA)模块,红外小目标暴力涨点
并行化 patch-aware 注意力(PPA)模块小目标涨点利器,在多个数据集下进行验证,解决微小目标具有复杂背景难识别的问题原创 2025-01-10 09:54:59 · 130 阅读 · 0 评论 -
YOLO11改进:block优化 | PKIBlock多尺度卷积核,助力小目标涨点 | CVPR2024 PKINet 遥感图像目标检测
PKINet利用不同大小的多个深度卷积核,优势:无需膨胀即可提取不同感受野中的多尺度纹理特征,改进思路来自CVPR2024PKINet,2024年前沿最新改进原创 2025-01-08 12:47:07 · 621 阅读 · 0 评论 -
YOLO11改进:IoU系列篇 | Powerful-IoU更加聚焦锚框的新型IoU,快速收敛 | 2024年最新IoU
Powerful-IoU更加聚焦锚框的新型IoU,快速收敛,一种结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数的损失函数原创 2025-01-08 12:41:28 · 254 阅读 · 0 评论 -
YOLO11改进:block涨点系列 | RepViTBlock合适的卷积核大小和优化挤压-激励大幅提升检测精度 | CVPR2024清华RepViT
RepViTBlock通过选择合适的卷积核大小和优化挤压-激励(Squeeze-and-excitation,简称SE)层的位置,这两种方法都能显著改善YOLOv8模型性能,改进思路来自CVPR2024清华RepViT原创 2025-01-08 10:50:07 · 193 阅读 · 0 评论 -
YOLO11改进:上采样系列篇 | 超轻量高效率动态上采样算子DySample,效果优于CARAFE、FADE和SAPA等
一种超轻量高效动态上采样DySample, 具有更少的参数、FLOPs,效果秒杀CAFFE和 nn.Upsample原创 2025-01-08 10:45:05 · 348 阅读 · 0 评论 -
YOLO11改进:小目标涨点系列 | 多分支卷积模块RFB,扩大感受野提升小目标检测精度
多分支卷积模块RFB,扩大感受野提升小目标检测精度原创 2025-01-08 09:54:26 · 168 阅读 · 0 评论 -
YOLO11改进:小目标涨点系列| 多尺度感受野特征的可扩张残差(DWR)注意力模块
一种新颖的可扩张残差(DWR)注意力模块,加强不同尺度特征提取能力原创 2025-01-08 09:50:09 · 207 阅读 · 0 评论 -
YOLO11改进:分层特征融合策略MSBlock | YOLO-MS ,超越YOLOv8与RTMDet,即插即用打破性能瓶颈
分层特征融合策略MSBlock,即插即用打破性能瓶颈原创 2025-01-08 09:46:03 · 145 阅读 · 0 评论 -
YOLO11改进:注意力涨点系列篇 | 一种轻量级的加强通道信息和空间信息提取能力的MLCA注意力
一种轻量级的加强通道信息和空间信息提取能力MLCA注意力原创 2025-01-08 09:40:20 · 62 阅读 · 0 评论 -
YOLO11改进:特征融合系列篇 | 多尺度特征融合iAFF,提升小目标检测能力 | 轻量级创新高效结合GhostConv
引入了一种新颖的多尺度特征融合iAFF原创 2025-01-08 09:35:26 · 194 阅读 · 0 评论 -
YOLO11改进:IoU系列篇 | Focaler-IoU更加聚焦的IoU损失Focaler-IoU |2024年最新发表
Focaler-IoU更加聚焦的IoU损失Focaler-IoU,能够在不同的检测任务中聚焦不同的回归样本,使用线性区间映射的方法来重构IoU损失原创 2025-01-08 09:29:38 · 364 阅读 · 0 评论 -
YOLO11改进:一种更高效,更快的可变形卷积(DCNv4),解决DCNv3的局限性,速度提升3倍以上 | OpenGVLab/商汤等联合提出DCNv4 ,全部任务皆SOTA
如何跟YOLO11结合:1)和C3k2创新性结合原创 2025-01-08 09:26:46 · 809 阅读 · 0 评论 -
YOLO11改进:注意力系列篇 | 小目标涨点系列篇 | 新型的多尺度卷积注意力(MSCA)模块
MSCA多尺度特性在小目标检测领域表现优异原创 2025-01-08 09:19:50 · 149 阅读 · 0 评论 -
YOLO11改进:注意力系列篇 | 高效的通道先验卷积注意力(CPCA) | 中科院 2023.6
高效的通道先验卷积注意力(CPCA)方法,支持注意力权重在通道和空间维度上的动态分布;原创 2024-11-08 13:54:58 · 258 阅读 · 0 评论 -
YOLO11改进:IoU系列篇 | Shape-IoU关注边界框本身的形状和尺度来计算损失 | 2023年12月最新IoU改进
提出了一种新颖的Shape-IoU,小目标检测实现涨点,更加关注边界框本身的形状和尺度来计算损失原创 2024-11-08 13:51:55 · 371 阅读 · 0 评论 -
YOLO11改进:轻量级Backbone改进 | UniRepLKNet,通用感知大内核卷积网络,RepLK改进版本 | 2023.11
UniRepLKNet,通用感知大内核卷积网络,ImageNet-22K预训练,精度和速度SOTA原创 2024-11-08 13:46:56 · 418 阅读 · 0 评论 -
YOLO11改进:block优化 | 简单高效的模块-现代反向残差移动模块 (iRMB) | ICCV2023 EMO
设计了一种面向移动端应用的简单而高效的现代反向残差移动模块 (InvertedResidualMobileBlock,iRMB),它吸收了类似 CNN 的效率来模拟短距离依赖和类似 Transformer 的动态建模能力来学习长距离交互,引入YOLO11原创 2024-11-08 13:22:15 · 405 阅读 · 0 评论 -
YOLO11改进:卷积魔改 | 自适应改变核大小卷积AKConv,效果优于标准卷积核和DSConv |2023.11月最新成果
AKConv 中,通过新的坐标生成算法定义任意大小的卷积核的初始位置。 为了适应目标的变化,引入了偏移量来调整每个位置的样本形状原创 2024-11-07 10:10:42 · 197 阅读 · 0 评论 -
YOLO11改进:轻量级Backbone改进 | VanillaNet极简神经网络模型 | 华为诺亚2023
一种极简的神经网络模型 VanillaNet,支持vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11等版本原创 2024-11-07 10:01:54 · 159 阅读 · 0 评论 -
YOLO11优化:IoU系列篇 |Inner-IoU:基于辅助边框的IoU损失,结合CIoU、SIoU、EIoU、DIoU、GIoU等,2023年11月最新IoU改进
Inner-IoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-EIoU,Inner-SIoU,其引入尺度因子ratio控制辅助边框的尺度大小用于计算损失。原创 2024-11-07 09:57:27 · 407 阅读 · 0 评论 -
YOLO11改进:注意力系列篇 | 小目标涨点系列篇 | 多尺度空洞注意力(MSDA) | 中科院一区顶刊
多尺度空洞注意力(MSDA)。MSDA 能够模拟小范围内的局部和稀疏的图像块交互;原创 2024-11-07 09:54:06 · 295 阅读 · 0 评论 -
YOLO11改进:LOSS系列篇 | SlideLoss,解决样本之间不平衡、简单样本和难样本(小目标遮挡)的不平衡问题
SlideLoss,解决样本之间不平衡、简单样本和难样本的不平衡问题原创 2024-10-24 09:53:49 · 446 阅读 · 0 评论 -
YOLO11改进:Neck改进系列 | Gold-YOLO,信息聚集-分发(Gather-and-Distribute Mechanism)机制 | 华为诺亚NeurIPS23
全新的信息聚集-分发(Gather-and-Distribute Mechanism)GD机制,替代YOLO11Neck,实现创新原创 2024-10-24 09:46:19 · 148 阅读 · 0 评论 -
YOLO11改进:卷积变体系列篇 | PConv,减少冗余计算和内存访问可以更有效地提取空间特征 | CVPR2023 FasterNet
PConv,减少冗余计算和内存访问可以更有效地提取空间特征,引入到YOLO11,结合C3k2实现二次创新;原创 2024-10-24 09:42:15 · 201 阅读 · 0 评论