数字图像处理100问—16 Prewitt 滤波器

本文详细介绍了如何使用Prewitt算子进行数字图像处理,包括滤波器原理、代码实现以及边缘检测效果展示。通过步骤学习,适合CV小白快速上手边缘检测技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:内容整理自:https://github.com/gzr2017/ImageProcessing100Wen
CV小白从0开始学数字图像处理

16 Prewitt 滤波器

Prewitt 滤波器是用于边缘检测的一种滤波器,使用下式定义:

      (a)纵向            (b)横向
      -1 -1 -1          -1 0 1
K = [  0  0  0 ]  K = [ -1 0 1 ]
       1  1  1          -1 0 1

代码如下:

1.引入库

CV2计算机视觉库

import cv2
import numpy as np

2.读入数据

img = cv2.imread("imori.jpg").astype(np.float)
H, W, C = img.shape

b = img[:, :, 0].copy()
g = img[:, :, 1].copy()
r = img[:, :, 2].copy()

3.灰度化

gray = 0.2126 * r + 0.7152 * g + 0.0722 * b
gray = gray.astype(np.uint8)

4.sobel Filter

K_size = 3

5.边缘补0

pad = K_size // 2
out = np.zeros((H + pad*2, W + pad*2), dtype=np.float)
out[pad:pad+H, pad:pad+W] = gray.copy().astype(np.float)
tmp = out.copy()

6 vertical or horizontal

## Sobel vertical
K = [[-1., -1., -1.],[0., 0., 0.], [1., 1., 1.]]
## Sobel horizontal
#K = [[-1., 0., 1.],[-1., 0., 1.],[-1., 0., 1.]]

7.处理

for y in range(H):
    for x in range(W):
        out[pad+y, pad+x] = np.sum(K * (tmp[y:y+K_size, x:x+K_size]))

out[out < 0] = 0
out[out > 255] = 255

out = out[pad:pad+H, pad:pad+W].astype(np.uint8)

8.保存结果

cv2.imwrite("out.jpg", out)
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.destroyAllWindows()


9.Sobel 滤波器处理后结果

左:垂直
右:水平
在这里插入图片描述在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值