计算机视觉101:5-PyTorch 模块化
计算机视觉101
,计算机视觉(Computer Vision, CV)是人工智能的核心领域之一,它赋予机器“看”和“理解”世界的能力,广泛应用于自动驾驶、医疗影像、工业检测、增强现实等前沿场景。然而,从理论到落地,CV工程师不仅需要掌握算法原理,更要具备工程化思维,才能让模型真正服务于现实需求。本课程以“学以致用”为核心理念,采用“理论+代码+部署”三位一体的教学方式,带您系统掌握计算机视觉的核心技术栈:
- 从基础开始:理解图像处理(OpenCV)、特征工程(SIFT/SURF)等传统方法,夯实CV基本功
- 进阶深度学习:掌握CNN、Transformer等现代模型(PyTorch),学会数据增强、模型调优技巧
- 实战部署落地:学习模型量化、ONNX转换、边缘计算(TensorRT/RKNN)
让算法在真实场景中高效运行通过Python代码示范+工业级案例(如缺陷检测、人脸识别),您将逐步构建从算法开发到嵌入式部署的完整能力链,最终独立完成一个可落地的CV项目。
无论您是希望转行AI的开发者、在校学生,还是寻求技术突破的工程师,本课程都将助您跨越“纸上谈兵”的瓶颈,成为兼具算法能力与工程思维的CV实战派。
🚀 现在开始,用代码让机器真正“看见”世界!
什么是模块化?
模块化是指将笔记本代码(来自 Jupyter Notebook 或 Google Colab 笔记本)转换为一系列不同的 Python 脚本,以提供类似的功能。
例如,我们可以将笔记本中的单元格代码转换为以下 Python 文件:
data_setup.py
- 用于准备和下载数据的文件(如果需要的话)。engine.py
- 包含各种训练函数的文件。model_builder.py
或model.py
- 用于创建 PyTorch 模型的文件。train.py
- 利用其他所有文件并训练目标 PyTorch 模型的文件。utils.py
- 专门用于实用工具函数的文件。
注意: 上述文件的命名和布局取决于您的使用场景和代码需求。Python 脚本与单个笔记本单元一样通用,这意味着您可以为几乎任何功能创建一个脚本。
示例结构
以下是模块化后的文件结构示例:
project/
│
├── data_setup.py # 数据准备和下载
├── engine.py # 训练引擎函数
├── model_builder.py # 模型构建逻辑
├── train.py # 主训练入口
└── utils.py # 工具函数集合
通过这种方式,可以更清晰地组织代码,并提高代码的可维护性和复用性。
为什么需要模块化?
笔记本(Notebooks)非常适合用于迭代探索和快速运行实验。
然而,在更大规模的项目中,你可能会发现 Python 脚本更易于复现且更容易运行。
尽管这是一个有争议的话题,但像 Netflix 这样的公司已经展示了如何在生产环境中使用笔记本作为代码工具。
生产代码 是指运行以向某人或某物提供服务的代码。
例如,如果你有一个在线运行的应用程序,其他人可以访问和使用它,那么运行该应用程序的代码就被认为是 生产代码。
并且像 fast.ai 的 nb-dev
(即 notebook development 的缩写)这样的库允许你在 Jupyter Notebook 中编写整个 Python 库(包括文档)。
笔记本与 Python 脚本的优缺点
双方都有各自的论据。
以下列表总结了一些主要话题:
优点 | 缺点 |
---|---|
笔记本 | 易于实验/入门 |
易于分享(例如:Google Colab 链接) | 难以进行版本控制 |
非常直观 | 文字和图形可能干扰代码 |
优点 | 缺点 |
---|---|
Python 脚本 | 可以将代码打包在一起(避免在不同笔记本之间重复编写相似代码) |
可以使用 git 进行版本控制 | 实验不如笔记本直观(通常需要运行整个脚本而不是单个单元格) |
许多开源项目使用脚本 | |
更大的项目可以在云供应商上运行(对笔记本的支持较少) |
我的工作流程
我通常会在 Jupyter/Google Colab 笔记本中开始机器学习项目,以便快速进行实验和可视化。
然后当我有了一个可行的方案时,我会将最有用的代码片段移动到 Python 脚本中。
编写机器学习代码有许多可能的工作流程。有些人喜欢从脚本开始,另一些人(比如我)则喜欢先从笔记本开始,然后再转向脚本。
PyTorch 在实际中的应用
在你的探索过程中,你会看到许多基于 PyTorch 的机器学习项目的代码仓库都提供了如何通过 Python 脚本运行 PyTorch 代码的说明。
例如,你可能会被要求在终端/命令行中运行类似以下的代码来训练模型:
python train.py --model MODEL_NAME --batch_size BATCH_SIZE --lr LEARNING_RATE --num_epochs NUM_EPOCHS
在命令行中运行带有各种超参数设置的 PyTorch train.py
脚本。
在这种情况下,train.py
是目标 Python 脚本,它可能包含用于训练 PyTorch 模型的函数。
而 --model
、--batch_size
、--lr
和 --num_epochs
被称为参数标志。
你可以将这些参数设置为你喜欢的任何值,只要它们与 train.py
兼容,就会正常工作;如果不兼容,则会报错。
例如,假设我们想用批量大小为 32、学习率为 0.001、训练 10 个 epoch 来训练我们在第 04 笔记本中的 TinyVGG 模型:
python train.py --model tinyvgg --batch_size 32 --lr 0.001 --num_epochs 10
你可以在 train.py
脚本中设置任意数量的参数标志以满足需求。
PyTorch 博客关于训练最先进的计算机视觉模型的文章也采用了这种风格。
我们将要涵盖的内容
本节的主要概念是:将有用的笔记本代码单元转换为可复用的 Python 文件。
这样做可以避免我们重复编写相同的代码。
本节包含两个笔记本:
- 05. 模块化:第一部分(单元模式) - 该笔记本以传统 Jupyter Notebook/Google Colab 笔记本形式运行,是第 04 笔记本的精简版本。
- 05. 模块化:第二部分(脚本模式) - 该笔记本与第一个相同,但增加了将每个主要部分转换为 Python 脚本的功能,例如
data_setup.py
和train.py
。
本文档中的文本重点在于代码单元 05. 模块化:第二部分(脚本模式),即顶部带有 %%writefile ...
的代码单元。
为什么分为两部分?
因为有时候学习某件事情的最佳方式是观察它如何与其他事物不同。
如果你同时运行这两个笔记本,你会看到它们之间的差异,而这些差异正是关键的学习点。
并排运行第 05 节的两个笔记本时,你会发现脚本模式笔记本中额外添加了代码单元,用于将单元模式笔记本中的代码转换为 Python 脚本。
我们的目标
在本节结束时,我们希望实现以下两个目标:
- 能够通过一行命令行代码训练我们在第 04 笔记本中构建的模型(Food Vision Mini):
python train.py
。 - 构建一个可复用的 Python 脚本目录结构,例如:
going_modular/
├── going_modular/
│ ├── data_setup.py
│ ├── engine.py
│ ├── model_builder.py
│ ├── train.py
│ └── utils.py
├── models/
│ ├── 05_going_modular_cell_mode_tinyvgg_model.pth
│ └── 05_going_modular_script_mode_tinyvgg_model.pth
└── data/
└── pizza_steak_sushi/
├── train/
│ ├── pizza/
│ │ ├── image01.jpeg
│ │ └── ...
│ ├── steak/
│ └── sushi/
└── test/
├── pizza/
├── steak/
└── sushi/
需要注意的地方
-
文档字符串 (Docstrings) - 编写可重现且易于理解的代码非常重要。基于这一理念,我们将放入脚本中的每个函数或类都遵循 Google 的 Python 文档字符串风格。
-
脚本顶部的导入语句 - 由于我们将创建的所有 Python 脚本都可以视为独立的小程序,因此所有脚本都需要在开头导入所需的模块。例如:
# 为 train.py 导入所需模块 import os import torch import data_setup import engine import model_builder import utils from torchvision import transforms
通过这种方式,我们可以确保代码的清晰性和模块化设计。
0. 单元模式与脚本模式
单元模式笔记本
像 05. 模块化第一部分(单元模式) 这样的单元模式笔记本是以常规方式运行的,笔记本中的每个单元格要么是代码,要么是 Markdown。
脚本模式笔记本
像 05. 模块化第二部分(脚本模式) 这样的脚本模式笔记本与单元模式笔记本非常相似,但其中许多代码单元格可能已被转换为 Python 脚本。
注意: 您不需要通过笔记本创建 Python 脚本,也可以直接通过集成开发环境(IDE)如 VS Code 创建它们。将脚本模式笔记本包含在本节中只是为了演示从笔记本过渡到 Python 脚本的一种方法。
1. 获取数据
在每个 05 笔记本中获取数据的过程与笔记本 04 中相同。
通过 Python 的 requests
模块调用 GitHub 下载一个 .zip
文件并解压。
import os
import requests
import zipfile
from pathlib import Path
# 设置数据文件夹路径
data_path = Path("data/")
image_path = data_path / "pizza_steak_sushi"
# 如果图像文件夹不存在,则下载并准备它...
if image_path.is_dir():
print(f"{image_path} 目录已存在。")
else:
print(f"未找到 {image_path} 目录,正在创建...")
image_path.mkdir(parents=True, exist_ok=True)
# 下载披萨、牛排、寿司数据
with open(data_path / "pizza_steak_sushi.zip", "wb") as f:
request = requests.get("https://github.com/mrdbourke/pytorch-deep-learning/raw/main/data/pizza_steak_sushi.zip")
print("正在下载披萨、牛排、寿司数据...")
f.write(request.content)
# 解压披萨、牛排、寿司数据
with zipfile.ZipFile(data_path / "pizza_steak_sushi.zip", "r") as zip_ref:
print("正在解压披萨、牛排、寿司数据...")
zip_ref.extractall(image_path)
# 删除压缩文件
os.remove(data_path / "pizza_steak_sushi.zip")
上述代码执行后,将生成一个名为 data
的文件夹,其中包含另一个名为 pizza_steak_sushi
的目录,该目录按照标准的图像分类格式存储了披萨、牛排和寿司的图像。
data/
└── pizza_steak_sushi/
├── train/
│ ├── pizza/
│ │ ├── train_image01.jpeg
│ │ ├── train_image02.jpeg
│ │ └── ...
│ ├── steak/
│ │ └── ...
│ └── sushi/
│ └── ...
└── test/
├── pizza/
│ ├── test_image01.jpeg
│ └── test_image02.jpeg
├── steak/
└── sushi/
数据结构说明
train/
:训练集,包含三个子目录pizza
、steak
和sushi
,分别存储对应类别的图像。test/
:测试集,同样包含pizza
、steak
和sushi
三个子目录,用于模型评估。
此数据结构符合常见的图像分类任务要求,便于后续处理和模型训练。
2. 创建数据集和数据加载器 (data_setup.py
)
一旦我们获取了数据,就可以将其转换为 PyTorch 的 Dataset
和 DataLoader
(一个用于训练数据,另一个用于测试数据)。
我们将创建有用的 Dataset
和 DataLoader
的代码封装到一个名为 create_dataloaders()
的函数中。
并通过以下代码行将其写入文件:%%writefile going_modular/data_setup.py
。
data_setup.py
%%writefile going_modular/data_setup.py
"""
包含用于创建 PyTorch DataLoaders 的功能模块,
适用于图像分类数据。
"""
import os
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
NUM_WORKERS = os.cpu_count()
def create_dataloaders(
train_dir: str,
test_dir: str,
transform: transforms.Compose,
batch_size: int,
num_workers: int = NUM_WORKERS
):
"""
创建训练和测试的 DataLoaders。
接收训练目录和测试目录路径,并将它们转换为 PyTorch Datasets,
然后再转换为 PyTorch DataLoaders。
参数:
train_dir (str): 训练目录的路径。
test_dir (str): 测试目录的路径。
transform (transforms.Compose): 对训练和测试数据执行的 torchvision 转换。
batch_size (int): 每个 DataLoader 中每批次的样本数量。
num_workers (int): 每个 DataLoader 的工作线程数,默认为 CPU 核心数。
返回:
一个元组 (train_dataloader, test_dataloader, class_names)。
其中 class_names 是目标类别的列表。
示例用法:
train_dataloader, test_dataloader, class_names = \\
create_dataloaders(train_dir="path/to/train_dir",
test_dir="path/to/test_dir",
transform=some_transform,
batch_size=32,
num_workers=4)
"""
# 使用 ImageFolder 创建数据集
train_data = datasets.ImageFolder(train_dir, transform=transform)
test_data = datasets.ImageFolder(test_dir, transform=transform)
# 获取类别名称
class_names = train_data.classes
# 将图像转换为数据加载器
train_dataloader = DataLoader(
train_data,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
)
test_dataloader = DataLoader(
test_data,
batch_size=batch_size,
shuffle=False, # 测试数据无需打乱
num_workers=num_workers,
pin_memory=True,
)
return train_dataloader, test_dataloader, class_names
如果需要创建 DataLoader
,我们现在可以使用 data_setup.py
中的函数,如下所示:
# 导入 data_setup.py
from going_modular import data_setup
# 创建训练/测试数据加载器并获取类别名称列表
train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(...)
注意事项
ImageFolder
:该方法会自动根据文件夹结构推断出类别标签。例如,如果训练目录中有两个子文件夹cat
和dog
,则类别名称将为['cat', 'dog']
。pin_memory=True
:在 GPU 上训练时,启用此选项可以加速数据传输。num_workers
:设置为os.cpu_count()
可以充分利用多核 CPU 提高性能。
3. 创建模型 (model_builder.py
)
在过去的几个笔记本中(notebook 03 和 notebook 04),我们已经多次构建了 TinyVGG 模型。
因此,将模型放入单独的文件中以便能够重复使用是有意义的。
让我们通过 %%writefile going_modular/model_builder.py
将 TinyVGG()
模型类放入脚本中:
model_builder.py
%%writefile going_modular/model_builder.py
"""
包含用于实例化 TinyVGG 模型的 PyTorch 代码。
"""
import torch
from torch import nn
class TinyVGG(nn.Module):
"""
创建 TinyVGG 架构。
在 PyTorch 中复制 CNN 解释器网站上的 TinyVGG 架构。
查看原始架构:https://poloclub.github.io/cnn-explainer/
参数:
input_shape: 整数,表示输入通道的数量。
hidden_units: 整数,表示层之间的隐藏单元数量。
output_shape: 整数,表示输出单元的数量。
"""
def __init__(self, input_shape: int, hidden_units: int, output_shape: int) -> None:
super().__init__()
self.conv_block_1 = nn.Sequential(
nn.Conv2d(in_channels=input_shape,
out_channels=hidden_units,
kernel_size=3,
stride=1,
padding=0),
nn.ReLU(),
nn.Conv2d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
stride=1,
padding=0),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2,
stride=2)
)
self.conv_block_2 = nn.Sequential(
nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding=0),
nn.ReLU(),
nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding=0),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.classifier = nn.Sequential(
nn.Flatten(),
# 这个 in_features 的形状从哪里来?
# 这是因为网络的每一层都会压缩并改变输入数据的形状。
nn.Linear(in_features=hidden_units*13*13,
out_features=output_shape)
)
def forward(self, x: torch.Tensor):
x = self.conv_block_1(x)
x = self.conv_block_2(x)
x = self.classifier(x)
return x
# return self.classifier(self.conv_block_2(self.conv_block_1(x))) # <- 利用操作融合的优势
现在,我们无需每次都从头编写 TinyVGG 模型,而是可以通过以下方式导入它:
import torch
# 导入 model_builder.py
from going_modular import model_builder
device = "cuda" if torch.cuda.is_available() else "cpu"
# 从 "model_builder.py" 脚本中实例化模型
torch.manual_seed(42)
model = model_builder.TinyVGG(input_shape=3,
hidden_units=10,
output_shape=len(class_names)).to(device)
说明
- 模块化设计:通过将模型定义放入单独的文件中,可以提高代码的可重用性和可维护性。
- 参数解释:
input_shape
: 输入图像的通道数(例如 RGB 图像为 3)。hidden_units
: 卷积层中的隐藏单元数量。output_shape
: 输出类别数量。
- 模型结构:
- 包含两个卷积块 (
conv_block_1
和conv_block_2
) 和一个分类器 (classifier
)。 - 使用
nn.Sequential
简化了层的堆叠。
- 包含两个卷积块 (
- 设备选择:根据是否支持 CUDA,自动选择运行设备(GPU 或 CPU)。
4. 创建 train_step()
和 test_step()
函数以及 train()
在 notebook 04 中,我们编写了几个训练函数:
train_step()
- 接收模型、DataLoader
、损失函数和优化器,并在DataLoader
上训练模型。test_step()
- 接收模型、DataLoader
和损失函数,并在DataLoader
上评估模型。train()
- 将上述两个函数结合,在给定的轮数(epochs)内执行训练和测试,并返回结果字典。
由于这些函数将是模型训练的核心部分,我们可以将它们放入一个名为 engine.py
的 Python 脚本中,使用以下命令创建文件:%%writefile going_modular/engine.py
。
以下是 engine.py
的内容:
## engine.py
```python
%%writefile going_modular/engine.py
"""
包含用于训练和测试 PyTorch 模型的函数。
"""
import torch
from tqdm.auto import tqdm
from typing import Dict, List, Tuple
def train_step(model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module,
optimizer: torch.optim.Optimizer,
device: torch.device) -> Tuple[float, float]:
"""训练 PyTorch 模型单个 epoch。
将目标 PyTorch 模型设置为训练模式,然后运行所有必要的训练步骤(前向传播、损失计算、优化器更新)。
参数:
model: 要训练的 PyTorch 模型。
dataloader: 用于训练模型的 DataLoader 实例。
loss_fn: 要最小化的 PyTorch 损失函数。
optimizer: 帮助最小化损失函数的 PyTorch 优化器。
device: 目标设备,用于计算(例如 "cuda" 或 "cpu")。
返回:
训练损失和训练准确率的元组。形式为 (train_loss, train_accuracy)。例如:
(0.1112, 0.8743)
"""
# 将模型设置为训练模式
model.train()
# 初始化训练损失和训练准确率
train_loss, train_acc = 0, 0
# 遍历数据加载器中的批次
for batch, (X, y) in enumerate(dataloader):
# 将数据发送到目标设备
X, y = X.to(device), y.to(device)
# 1. 前向传播
y_pred = model(X)
# 2. 计算并累积损失
loss = loss_fn(y_pred, y)
train_loss += loss.item()
# 3. 优化器梯度清零
optimizer.zero_grad()
# 4. 反向传播
loss.backward()
# 5. 优化器更新
optimizer.step()
# 计算并累积准确率指标
y_pred_class = torch.argmax(torch.softmax(y_pred, dim=1), dim=1)
train_acc += (y_pred_class == y).sum().item() / len(y_pred)
# 调整指标以获取每批次的平均损失和准确率
train_loss = train_loss / len(dataloader)
train_acc = train_acc / len(dataloader)
return train_loss, train_acc
def test_step(model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module,
device: torch.device) -> Tuple[float, float]:
"""测试 PyTorch 模型单个 epoch。
将目标 PyTorch 模型设置为“eval”模式,然后在测试数据集上执行前向传播。
参数:
model: 要测试的 PyTorch 模型。
dataloader: 用于测试模型的 DataLoader 实例。
loss_fn: 用于计算测试数据损失的 PyTorch 损失函数。
device: 目标设备,用于计算(例如 "cuda" 或 "cpu")。
返回:
测试损失和测试准确率的元组。形式为 (test_loss, test_accuracy)。例如:
(0.0223, 0.8985)
"""
# 将模型设置为评估模式
model.eval()
# 初始化测试损失和测试准确率
test_loss, test_acc = 0, 0
# 启用推理上下文管理器
with torch.inference_mode():
# 遍历 DataLoader 的批次
for batch, (X, y) in enumerate(dataloader):
# 将数据发送到目标设备
X, y = X.to(device), y.to(device)
# 1. 前向传播
test_pred_logits = model(X)
# 2. 计算并累积损失
loss = loss_fn(test_pred_logits, y)
test_loss += loss.item()
# 计算并累积准确率
test_pred_labels = test_pred_logits.argmax(dim=1)
test_acc += ((test_pred_labels == y).sum().item() / len(test_pred_labels))
# 调整指标以获取每批次的平均损失和准确率
test_loss = test_loss / len(dataloader)
test_acc = test_acc / len(dataloader)
return test_loss, test_acc
def train(model: torch.nn.Module,
train_dataloader: torch.utils.data.DataLoader,
test_dataloader: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
loss_fn: torch.nn.Module,
epochs: int,
device: torch.device) -> Dict[str, List]:
"""训练和测试 PyTorch 模型。
在指定的轮数内,通过调用 `train_step()` 和 `test_step()` 函数对目标 PyTorch 模型进行训练和测试,同时在同一轮次循环中完成训练和测试。
计算、打印并存储评估指标。
参数:
model: 要训练和测试的 PyTorch 模型。
train_dataloader: 用于训练模型的 DataLoader 实例。
test_dataloader: 用于测试模型的 DataLoader 实例。
optimizer: 帮助最小化损失函数的 PyTorch 优化器。
loss_fn: 用于计算两个数据集损失的 PyTorch 损失函数。
epochs: 表示训练多少轮的整数。
device: 目标设备,用于计算(例如 "cuda" 或 "cpu")。
返回:
包含训练和测试损失以及训练和测试准确率指标的字典。每个指标的值存储在一个列表中,对应每个 epoch。
形式为:{train_loss: [...],
train_acc: [...],
test_loss: [...],
test_acc: [...]}
例如,如果训练 epochs=2:
{train_loss: [2.0616, 1.0537],
train_acc: [0.3945, 0.3945],
test_loss: [1.2641, 1.5706],
test_acc: [0.3400, 0.2973]}
"""
# 创建空的结果字典
results = {"train_loss": [],
"train_acc": [],
"test_loss": [],
"test_acc": []
}
# 在多个 epoch 中循环执行训练和测试步骤
for epoch in tqdm(range(epochs)):
train_loss, train_acc = train_step(model=model,
dataloader=train_dataloader,
loss_fn=loss_fn,
optimizer=optimizer,
device=device)
test_loss, test_acc = test_step(model=model,
dataloader=test_dataloader,
loss_fn=loss_fn,
device=device)
# 打印当前进度
print(
f"Epoch: {epoch+1} | "
f"train_loss: {train_loss:.4f} | "
f"train_acc: {train_acc:.4f} | "
f"test_loss: {test_loss:.4f} | "
f"test_acc: {test_acc:.4f}"
)
# 更新结果字典
results["train_loss"].append(train_loss)
results["train_acc"].append(train_acc)
results["test_loss"].append(test_loss)
results["test_acc"].append(test_acc)
# 返回填充后的结果字典
return results
现在我们有了 engine.py
脚本,可以通过以下方式导入其中的函数:
# 导入 engine.py
from going_modular import engine
# 调用 engine.py 中的 train() 函数
engine.train(...)
5. 创建用于保存模型的函数 (utils.py
)
在训练模型的过程中,或者训练完成后,你可能希望保存模型。
由于我们在之前的笔记本中已经多次编写了保存模型的代码,因此将其转换为一个函数并保存到文件中是合理的。
通常,我们会将辅助函数存储在一个名为 utils.py
的文件中(代表 utilities,即工具)。
让我们通过以下命令将 save_model()
函数保存到名为 utils.py
的文件中:
utils.py
%%writefile going_modular/utils.py
"""
包含各种用于 PyTorch 模型训练和保存的实用函数。
"""
import torch
from pathlib import Path
def save_model(model: torch.nn.Module,
target_dir: str,
model_name: str):
"""将 PyTorch 模型保存到目标目录。
参数:
model: 要保存的目标 PyTorch 模型。
target_dir: 保存模型的目标目录。
model_name: 保存模型的文件名。应包含 ".pth" 或 ".pt" 作为文件扩展名。
示例用法:
save_model(model=model_0,
target_dir="models",
model_name="05_going_modular_tingvgg_model.pth")
"""
# 创建目标目录
target_dir_path = Path(target_dir)
target_dir_path.mkdir(parents=True, exist_ok=True)
# 创建模型保存路径
assert model_name.endswith(".pth") or model_name.endswith(".pt"), "model_name 应以 '.pt' 或 '.pth' 结尾"
model_save_path = target_dir_path / model_name
# 保存模型的状态字典
print(f"[INFO] 正在保存模型到: {model_save_path}")
torch.save(obj=model.state_dict(), f=model_save_path)
现在,如果我们想使用 save_model()
函数,无需重新编写它,只需导入并调用即可:
# 导入 utils.py
from going_modular import utils
# 将模型保存到文件
utils.save_model(
model=...,
target_dir=...,
model_name=...
)
格式优化后的 Markdown 内容
## 5. 创建用于保存模型的函数 (`utils.py`)
在训练模型的过程中,或者训练完成后,你可能希望保存模型。
由于我们在之前的笔记本中已经多次编写了保存模型的代码,因此将其转换为一个函数并保存到文件中是合理的。
通常,我们会将辅助函数存储在一个名为 **`utils.py`** 的文件中(代表 utilities,即工具)。
让我们通过以下命令将 `save_model()` 函数保存到名为 `utils.py` 的文件中:
### `utils.py` 文件内容
```python
%%writefile going_modular/utils.py
"""
包含各种用于 PyTorch 模型训练和保存的实用函数。
"""
import torch
from pathlib import Path
def save_model(model: torch.nn.Module, target_dir: str, model_name: str):
"""将 PyTorch 模型保存到目标目录。
参数:
model: 要保存的目标 PyTorch 模型。
target_dir: 保存模型的目标目录。
model_name: 保存模型的文件名。应包含 `.pth` 或 `.pt` 作为文件扩展名。
示例用法:
save_model(model=model_0,
target_dir="models",
model_name="05_going_modular_tingvgg_model.pth")
"""
# 创建目标目录
target_dir_path = Path(target_dir)
target_dir_path.mkdir(parents=True, exist_ok=True)
# 创建模型保存路径
assert model_name.endswith(".pth") or model_name.endswith(".pt"), "model_name 应以 '.pt' 或 '.pth' 结尾"
model_save_path = target_dir_path / model_name
# 保存模型的状态字典
print(f"[INFO] 正在保存模型到: {model_save_path}")
torch.save(obj=model.state_dict(), f=model_save_path)
使用方法
如果需要使用 save_model()
函数,可以通过以下方式导入并调用:
# 导入 utils.py
from going_modular import utils
# 将模型保存到文件
utils.save_model(
model=...,
target_dir=...,
model_name=...
)
这样可以避免重复编写代码,并提高代码的可维护性。
6. 训练、评估并保存模型 (train.py
)
正如之前讨论的,你经常会遇到将所有功能整合到一个 train.py
文件中的 PyTorch 仓库。
这个文件本质上是在说“使用可用的数据训练模型”。
在我们的 train.py
文件中,我们将把其他 Python 脚本的功能结合起来,并用它来训练一个模型。
这样我们就可以通过命令行的一行代码来训练一个 PyTorch 模型:
python train.py
为了创建 train.py
,我们将按照以下步骤进行:
- 导入各种依赖项,主要包括
torch
、os
、torchvision.transforms
以及来自going_modular
目录的所有脚本:data_setup
、engine
、model_builder
和utils
。 - 注意:由于
train.py
将位于going_modular
目录内,因此我们可以直接通过import ...
导入其他模块,而无需使用from going_modular import ...
。 - 设置各种超参数,例如批量大小(batch size)、训练轮数(epochs)、学习率(learning rate)和隐藏单元数(hidden units)。这些超参数未来可以通过 Python 的
argparse
模块设置。 - 设置训练和测试数据目录。
- 编写与设备无关的代码(device-agnostic code)。
- 创建必要的数据转换(transforms)。
- 使用
data_setup.py
创建数据加载器(DataLoaders)。 - 使用
model_builder.py
创建模型。 - 设置损失函数和优化器。
- 使用
engine.py
训练模型。 - 使用
utils.py
保存模型。
我们可以通过在 notebook 单元格中运行以下命令来创建该文件:
%%writefile going_modular/train.py
以下是完整的 train.py
文件内容:
%%writefile going_modular/train.py
"""
使用与设备无关的代码训练 PyTorch 图像分类模型。
"""
import os
import torch
import data_setup
import engine
import model_builder
import utils
from torchvision import transforms
# 设置超参数
NUM_EPOCHS = 5
BATCH_SIZE = 32
HIDDEN_UNITS = 10
LEARNING_RATE = 0.001
# 设置目录
train_dir = "data/pizza_steak_sushi/train"
test_dir = "data/pizza_steak_sushi/test"
# 设置目标设备
device = "cuda" if torch.cuda.is_available() else "cpu"
# 创建数据转换
data_transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor()
])
# 使用 data_setup.py 创建 DataLoaders
train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(
train_dir=train_dir,
test_dir=test_dir,
transform=data_transform,
batch_size=BATCH_SIZE
)
# 使用 model_builder.py 创建模型
model = model_builder.TinyVGG(
input_shape=3,
hidden_units=HIDDEN_UNITS,
output_shape=len(class_names)
).to(device)
# 设置损失函数和优化器
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# 使用 engine.py 开始训练
engine.train(
model=model,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
loss_fn=loss_fn,
optimizer=optimizer,
epochs=NUM_EPOCHS,
device=device
)
# 使用 utils.py 保存模型
utils.save_model(
model=model,
target_dir="models",
model_name="05_going_modular_script_mode_tinyvgg_model.pth"
)
太棒了!
现在我们可以通过在命令行中运行以下命令来训练一个 PyTorch 模型:
python train.py
这样做将利用我们创建的所有其他代码脚本。
如果需要,我们还可以调整 train.py
文件以使用 Python 的 argparse
模块接受命令行参数输入。这将允许我们提供不同的超参数设置,例如:
python train.py --model MODEL_NAME --batch_size BATCH_SIZE --lr LEARNING_RATE --num_epochs NUM_EPOCHS
这样可以更灵活地控制训练过程。
课外学习
- 若要了解有关构建 Python 项目的更多信息,请查阅 Real Python 关于 Python 应用程序布局 的指南。
- 若要获取关于 PyTorch 代码样式的灵感,请参考 Igor Susmelj 编写的 PyTorch 样式指南(本章中的许多样式规则基于此指南以及各种类似的 PyTorch 仓库)。
- 若要查看由 PyTorch 团队编写的示例
train.py
脚本以及其他用于训练最先进的图像分类模型的 PyTorch 脚本,请访问他们在 GitHub 上的 classification 仓库。