😷 口罩检测数据集-1591张图片
📦 已发布目标检测数据集合集(持续更新)
数据集名称 | 图像数量 | 应用方向 | 博客链接 |
---|---|---|---|
🔌 电网巡检检测数据集 | 1600 张 | 电力设备目标检测 | 点击查看 |
🔥 火焰 / 烟雾 / 人检测数据集 | 10000张 | 安防监控,多目标检测 | 点击查看 |
🚗 高质量车牌识别数据集 | 10,000 张 | 交通监控 / 车牌识别 | 点击查看 |
🌿 农田杂草航拍检测数据集 | 1,200 张 | 农业智能巡检 | 点击查看 |
🐑 航拍绵羊检测数据集 | 1,700 张 | 畜牧监控 / 航拍检测 | 点击查看 |
🌡️ 热成像人体检测数据集 | 15,000 张 | 热成像下的行人检测 | 点击查看 |
🦺 安全背心检测数据集 | 3,897 张 | 工地安全 / PPE识别 | 点击查看 |
🚀 火箭检测数据集介绍 | 12,000 张 | 智慧医疗 / 养老护理 | 点击查看 |
⚡ 绝缘子故障检测数据集 | 2,100张 | 无人机巡检/智能运维 | 点击查看 |
🚦交通标志检测数据集 | 1866张 | 智能驾驶系统/地图数据更新 | 点击查看 |
🚧 道路交通标志检测数据集 | 2,000张 | 智能地图与导航/交通监控与执法 | 点击查看 |
📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~
😷 口罩检测数据集介绍
📌 数据集概览
本项目是专注于人脸口罩佩戴检测的计算机视觉数据集,共包含约 1,591 张图像,旨在训练深度学习模型实现公共场所、室内外等多种场景下人员口罩佩戴状态的精准检测与识别。
- 图像数量:1,591 张
- 类别数:2 类
- 适用任务:目标检测(Object Detection)
- 适配模型:YOLOv5、YOLOv8、Faster R-CNN、SSD 等主流框架
包含类别
类别 | 描述 |
---|---|
mask | 佩戴口罩的人脸 |
no-mask | 未佩戴口罩的人脸 |
数据集覆盖口罩佩戴与未佩戴两种状态,能够显著提升模型在实际应用场景下的检测准确性。
🎯 应用场景
该数据集非常适用于以下场景与研究方向:
-
疫情防控管理
实时监测公共场所人员口罩佩戴情况,确保防疫措施落实到位。 -
智能门禁系统
集成到门禁设备中,自动检测进入人员是否佩戴口罩,提升安全管理水平。 -
公共场所安全监控
医院、学校、商场等场所的智能监控系统,实现自动化合规检查。 -
健康合规检查
企业、机构等场所的健康管理系统,辅助人工进行快速筛查。 -
人脸识别预处理
作为人脸识别系统的预处理步骤,提高口罩遮挡情况下的识别准确率。 -
智慧城市管理
支撑城市公共卫生管理、应急响应以及智慧化治理系统。
🖼 数据样本展示
以下展示部分数据集内的样本图片(均带有目标检测框):
数据集包含多种真实场景下的图像:
- 室内外不同环境的人脸图像
- 不同光照条件下的检测样本
- 多角度、多姿态的人脸数据
- 单人和多人场景的混合样本
场景涵盖日常生活、工作场所、公共区域等多种环境,数据多样性良好,有助于训练出具备鲁棒性的检测模型。
🛠 文件结构与使用建议
项目通常包含如下文件结构:
mask-detection-dataset/
├── images/
│ ├── train/
│ │ ├── 0001.jpg
│ │ ├── 0002.jpg
│ │ └── ...
│ ├── val/
│ │ ├── 0001.jpg
│ │ ├── 0002.jpg
│ │ └── ...
│ └── test/
│ ├── 0001.jpg
│ ├── 0002.jpg
│ └── ...
├── labels/
│ ├── train/
│ │ ├── 0001.txt
│ │ ├── 0002.txt
│ │ └── ...
│ ├── val/
│ │ ├── 0001.txt
│ │ ├── 0002.txt
│ │ └── ...
│ └── test/
│ ├── 0001.txt
│ ├── 0002.txt
│ └── ...
├── data.yaml
└── README.md
使用建议
-
数据预处理
- 建议对图像进行尺寸归一化(如 640x640)
- 可应用数据增强技术:旋转、翻转、亮度调整等
- 确保训练/验证/测试集的合理划分
-
模型训练优化
- 针对召回率较低的问题,可以调整损失函数权重
- 使用多尺度训练提升检测效果
- 考虑使用预训练模型进行迁移学习
-
实际部署建议
- 根据具体应用场景进行模型微调
- 在边缘设备部署时考虑模型压缩和加速
- 建立持续的性能监控和模型更新机制
-
质量保证
- 定期验证模型在新场景下的表现
- 收集困难样本进行模型改进
- 建立人工审核机制确保检测准确性
🔗 技术标签
计算机视觉
目标检测
口罩检测
疫情防控
深度学习
YOLO
公共安全
智能监控
注意: 本数据集适用于研究和商业用途,使用时请确保遵守相关的数据使用协议和隐私保护规定。
YOLOv8 训练实战
本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。
📦 1. 环境配置
建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。
# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate # Windows 用户使用 yolov8_env\Scripts\activate
安装 YOLOv8 官方库 ultralytics
pip install ultralytics
📁 2. 数据准备
2.1 数据标注格式(YOLO)
每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:
<class_id> <x_center> <y_center> <width> <height>
所有值为相对比例(0~1)。
类别编号从 0 开始。
2.2 文件结构示例
datasets/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
2.3 创建 data.yaml 配置文件
path: ./datasets
train: images/train
val: images/val
nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]
🚀 3. 模型训练
YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。
yolo detect train \
model=yolov8s.pt \
data=./data.yaml \
imgsz=640 \
epochs=50 \
batch=16 \
project=weed_detection \
name=yolov8s_crop_weed
参数 | 类型 | 默认值 | 说明 |
---|---|---|---|
model | 字符串 | - | 指定基础模型架构文件或预训练权重文件路径(.pt /.yaml ) |
data | 字符串 | - | 数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义 |
imgsz | 整数 | 640 | 输入图像的尺寸(像素),推荐正方形尺寸(如 640x640) |
epochs | 整数 | 100 | 训练总轮次,50 表示整个数据集会被迭代 50 次 |
batch | 整数 | 16 | 每个批次的样本数量,值越大需要越多显存 |
project | 字符串 | - | 项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下 |
name | 字符串 | - | 实验名称,用于在项目目录下创建子文件夹存放本次训练结果 |
关键参数补充说明:
-
model=yolov8s.pt
- 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
- 可用选项:
yolov8n.pt
(nano)/yolov8m.pt
(medium)/yolov8l.pt
(large)
-
data=./data.yaml
# 典型 data.yaml 结构示例 path: ../datasets/weeds train: images/train val: images/val names: 0: Bent_Insulator 1: Broken_Insulator_Cap 2: ... 3: ...
📈 4. 模型验证与测试
4.1 验证模型性能
yolo detect val \
model=runs/detect/yolov8s_crop_weed/weights/best.pt \
data=./data.yaml
参数 | 类型 | 必需 | 说明 |
---|---|---|---|
model | 字符串 | 是 | 要验证的模型权重路径(通常为训练生成的 best.pt 或 last.pt ) |
data | 字符串 | 是 | 与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义 |
关键参数详解
-
model=runs/detect/yolov8s_crop_weed/weights/best.pt
- 使用训练过程中在验证集表现最好的模型权重(
best.pt
) - 替代选项:
last.pt
(最终epoch的权重) - 路径结构说明:
runs/detect/ └── [训练任务名称]/ └── weights/ ├── best.pt # 验证指标最优的模型 └── last.pt # 最后一个epoch的模型
- 使用训练过程中在验证集表现最好的模型权重(
-
data=./data.yaml
- 必须与训练时使用的配置文件一致
- 确保验证集路径正确:
val: images/val # 验证集图片路径 names: 0: crop 1: weed
常用可选参数
参数 | 示例值 | 作用 |
---|---|---|
batch | 16 | 验证时的批次大小 |
imgsz | 640 | 输入图像尺寸(需与训练一致) |
conf | 0.25 | 置信度阈值(0-1) |
iou | 0.7 | NMS的IoU阈值 |
device | 0/cpu | 选择计算设备 |
save_json | True | 保存结果为JSON文件 |
典型输出指标
Class Images Instances P R mAP50 mAP50-95
all 100 752 0.891 0.867 0.904 0.672
crop 100 412 0.912 0.901 0.927 0.701
weed 100 340 0.870 0.833 0.881 0.643
4.2 推理测试图像
yolo detect predict \
model=runs/detect/yolov8s_crop_weed/weights/best.pt \
source=./datasets/images/val \
save=True
🧠 5. 自定义推理脚本(Python)
from ultralytics import YOLO
import cv2
# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')
# 推理图像
results = model('test.jpg')
# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')
🛠 6. 部署建议
✅ 本地运行:通过 Python 脚本直接推理。
🌐 Web API:可用 Flask/FastAPI 搭建检测接口。
📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。
导出示例:
yolo export model=best.pt format=onnx
📌 总结流程
阶段 | 内容 |
---|---|
✅ 环境配置 | 安装 ultralytics, PyTorch 等依赖 |
✅ 数据准备 | 标注图片、组织数据集结构、配置 YAML |
✅ 模型训练 | 使用命令行开始训练 YOLOv8 模型 |
✅ 验证评估 | 检查模型准确率、mAP 等性能指标 |
✅ 推理测试 | 运行模型检测实际图像目标 |
✅ 高级部署 | 导出模型,部署到 Web 或边缘设备 |