【Segment Anything Model】十一:LoRA微调SAMEncoder图像编码器

本文介绍了使用LoRA技术微调Segment Anything Model (SAM) 中的图像编码器部分,通过在QV矩阵旁添加低秩矩阵AB。LoRA避免了全模型微调带来的资源消耗,通过低秩矩阵实现有效参数更新,提升模型在特定领域的适配性。文章提供相关代码示例和分模块讲解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🍉 博主微信 cvxiayixiao
🍓 【Segment Anything Model】计算机视觉检测分割任务专栏。 链接
🍑 【公开数据集预处理】特别是医疗公开数据集的接受和预处理,提供代码讲解。链接
🍈 【opencv+图像处理】opencv代码库讲解,结合图像处理知识,不仅仅是调库。链接

1️⃣预备知识

  • 我们前几章讲的1. 有利用sam预训练权重做微调的 2. 有结合cnn小网络特征的,

  • 都有一个共性就是都冻结了sam的图像编码器

  • 原因是我在微调SAM编码器和解码器的全部参数的时候,发现编码器消耗较大内存,大概48G,她本身用的VIT的Transformer,大也合理。

  • 本篇介绍用Lora方法微调SAM的图像编码器来降低内存消耗

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cv夏一笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值