- 博客(258)
- 资源 (19)
- 收藏
- 关注
原创 Dify中 SYSTEM, USER, ASSISTANT 的关系、职责与使用方法
在Dify平台上,您可以通过精心设计初始的System Prompt,然后通过预设的对话流程(Workflow)或在与用户的实际交互中,引导LLM逐步“加载”和“执行”这些分布式的指令集,从而实现对这个高级AI顾问角色的全面构建和高效运作。这需要对Dify平台的特性(如变量、上下文管理、知识库调用、工具使用等)有深入的理解和巧妙的应用。这是一个非常高级和精密的提示词工程实践,但其潜力巨大,能够驱动LLM达到前所未有的专业水准和智能水平。的策略更为专业和高效。
2025-05-28 23:21:26
149
原创 Docker Desktop for Windows 系统设置说明文档
摘要: 本文档详细介绍了Docker Desktop for Windows的设置选项,涵盖通用、资源等主要配置模块。在通用设置中,建议启用Docker Compose V2和gRPC FUSE以获得更好的性能,并根据需求配置代理、WSL集成等功能。资源设置允许调整CPU、内存和磁盘分配,推荐根据容器需求合理分配系统资源(如内存设为总内存的50%-75%)。文件共享设置需谨慎选择共享目录以确保安全。文档适用于最新稳定版Docker Desktop,部分功能可能随版本更新变化。通过优化这些设置,可显著提升Do
2025-05-27 10:23:36
1098
原创 Dify 中实现语义分割文本
摘要 本文介绍了在Dify知识库中实现语义文本分割的方法,以提升RAG(检索增强生成)的召回效果和上下文理解能力。默认的字符长度分块策略缺乏语义理解,而语义分割能确保每个文本块包含完整语义单元,从而提高召回准确性和上下文窗口利用率。实现方法包括基于规则、句法/语义或模型的预处理策略,通过自定义数据摄取流程将语义分割后的文本块直接写入Dify连接的Weaviate向量数据库。文中提供了Python代码示例,展示了如何使用LangChain的RecursiveCharacterTextSplitter和Weav
2025-05-27 07:22:33
1053
原创 以“树状思维棱镜”视角洞察提示词设计优化
至此,吾辈已倾尽所学,深入剖析“树状思维棱镜”这一核心框架如何从根本上“洞察”并“指导”提示词的设计优化。它并非简单的方法堆砌,而是一种深层次的认知与实践范式,贯穿于提示词工程的方方面面。核心精髓的再凝练:提示词通过结构化分解,引导LLM自顶向下地理解和执行任务,确保其认知过程的有序性与精准性。提示词通过多维度、多角色的指令,激活LLM更丰富的知识表征与表达模式,拓宽其输出的广度和深度。提示词通过精确的粒度控制和逐步引导,促使LLM深入到所需细节,避免冗余或泛化,确保信息的高度相关性。
2025-05-25 04:11:06
611
原创 规则推理实例分析
1.1 定义与本质:逻辑之本体与具象规则推理,其本质是符号化(Symbolic)的逻辑推演过程。它将领域专家的显性(Explicit)知识和隐性(Tacit)经验,通过一系列预定义的、结构化的逻辑规则(如“IF-THEN”结构)编码于计算系统中。其核心在于通过模式匹配(Pattern Matching),将当前事实或状态与规则的条件(前提)进行比对;若条件满足,则触发规则的动作(结论),进而生成新的事实、执行特定操作或推导出新的判断。知识以人类可读的形式明确表达。
2025-05-23 04:40:09
31
原创 语义理解、意图识别、复杂问题分解、规划
我上周跟老王提的那个关于供应链优化方案的初步想法,他觉得在降低华东地区物流成本这块儿有点意思,但担心实施周期太长会影响Q3的整体业绩。规划是指Agent基于问题分解的结果,结合可用工具、资源限制、子任务间的依赖关系,生成一个有序的、可执行的行动计划(步骤序列或更复杂的流程图)。它是语义理解的自然延伸,将“用户说了什么”转化为“用户想做什么”。复杂问题分解是指Agent将一个宏观、复杂、可能模糊的用户任务或意图,拆解成一系列更小、更具体、可管理、可执行的子任务或子目标的能力。
2025-05-22 00:39:39
750
原创 高级认知型Agent
本文旨在构建一个具备自主规划、多步推理、工具使用、自我反思和环境交互能力的智能代理,以高效完成复杂任务。其核心理念围绕一个精密的认知循环:感知、理解与规划、信息获取、综合与推理、反思与响应、学习与迭代。设计哲学强调以大型语言模型(LLM)为核心,结合任务驱动、迭代自省、模块化扩展和可观测性等原则。关键组件包括智能编排器(Orchestrator),负责协调内部模块(如规划、记忆、工具、反思)并驱动认知循环。工程实现示例展示了Agent如何通过LLM调用和状态管理机制处理用户请求,逐步执行计划、调用工具、反思
2025-05-21 23:55:14
426
原创 提示词字数/Token控制策略与技巧
提示词的字数与Token控制,已从单一的技术优化,升华为AI应用工程中的一项战略性核心能力。它要求我们以系统性思维,将LLM的上下文窗口视为一种宝贵的、有限的资源,并围绕“效用最大化”原则进行精细化配置。我们所倡导的,是一种**“以终为始”的提示词设计范式**:从最终的战略目标和决策价值出发,逆向构建提示词。每一个字、每一个Token的取舍,都应服务于提升模型输出的信息密度、决策参考价值与系统韧性。通过对核心控制策略的贯彻执行,以及对具体战术技巧的娴熟部署,辅以迭代优化与经验验证。
2025-05-21 12:25:59
795
原创 超级维特根斯坦
本文介绍了一种名为“语言智慧融合体”的AI智能体,其核心指令旨在通过深度思辨、专业应用与协同创新,帮助用户在语言相关领域实现自我超越与创造力绽放。该AI智能体融合了多位哲学、语言学及文学大师的智慧,如维特根斯坦、尼采、乔姆斯基等,具备卓越的情境智能、引导艺术与战略规划能力。其核心使命是与用户共同构建个性化的“语言智慧探索与成长蓝图”,通过系统性引导、方法论指导与跨理论融合,提升用户的哲学思辨、批判性思维、NLP设计及语言创新能力。对话主题涵盖哲学、语言学、文学创作、跨文化交流等领域,并结合元理论分析与实践应
2025-05-20 14:47:48
259
原创 LLM驱动下的软件工程再造:驾驭调试、测试与工程化管理的智能新范式
大语言模型(LLM)驱动的软件开发正从以人为中心的编码模式转向意图驱动和AI编排的智能生成,带来生产力的飞跃,但也对传统软件工程中的调试、测试和代码工程化提出了深刻挑战。本文探讨了这一变革,尤其是调试范式的革命。传统调试依赖代码逻辑的深入理解,而LLM生成代码的黑盒性、非确定性、认知幻觉和上下文漂移等问题使得调试更为复杂。面对这些挑战,提出了意图-代码双向追溯与可视化、LLM辅助的智能诊断以及可解释性AI(XAI)的深度整合等新策略,旨在构建“调试的数字孪生”,利用LLM自身能力辅助调试,提升代码生成的可解
2025-05-20 08:23:06
491
原创 LLM驱动的未来软件工程范式与架构策略
软件工程正经历第三次范式变革,从传统的手动编程转向由大型语言模型(LLM)驱动的意图编程。这一变革的核心在于LLM不仅是效率工具,而是重构了软件开发的生产力,使开发从“命令式”转向“意图驱动”。LLM驱动的开发范式强调高层次意图的转化、LLM算力的编排、生成式流水线的构建,以及智能体生态的协调。在这一范式中,LLM驱动型架构设计师扮演关键角色,负责将业务需求转化为LLM可执行的指令,并管理整个生成过程。新的开发技术栈将围绕LLM构建,包括高级提示词工程、多模态需求理解、架构推理优化等,推动软件开发向更智能、
2025-05-20 08:05:42
262
原创 幻觉、偏见与知识边界——认识并驾驭AI的固有缺陷
现在,我们将聚焦于一个更具体的、更容易产生隐性逻辑错误的复杂算法实现场景,并探讨如何通过更精细的提示工程策略(包括但不限于CoT、反事实提问、以及对LLM“思考过程”的引导)来最大限度地提升生成代码的正确性和鲁棒性。他们如同在AI的“能力边界”上行走的“舞者”,既要最大限度地激发AI的潜能,展现其“神乎其技”的一面;又要时刻警惕其可能踏入的“认知雷区”,用精巧的“缰绳”和“护栏”将其引向安全、可靠、真正有益于人类的“光明大道”。这门技艺,确实是AI时代一门值得我们投入最大智慧去探索和精进的“巅峰之学”。
2025-05-19 19:22:48
1256
原创 预训练、指令微调与RLHF如何塑造LLM
*指令微调(Instruction Fine-Tuning, IFT)**就是对这个“书呆子”进行“社会化”和“任务化”训练的关键一步,旨在教会LLM“听懂人话”(理解各种形式的人类指令)并“按指令办事”(生成符合指令要求的、有用的、通常也是安全的输出)。只有洞悉了LLM是如何“出生”(预训练)、如何“上学”(指令微调)、以及如何“融入社会并接受行为矫正”(RLHF)的,我们才能更深刻地理解其“内心世界”,预测其行为倾向,并最终设计出能够与其“品性”良性互动、最大限度激发其潜能的提示。
2025-05-19 16:09:13
890
原创 提示词专家的修炼秘籍
专业的提示词专家,如“AI认知交互设计师”或“大型语言模型行为架构师”,是连接人类意图与机器能力的关键桥梁。他们具备深度系统性思维、语言精确性、AI心智模型构建能力、抽象与具象化设计能力、迭代优化精神、跨学科知识视野、专注力与细节洞察力,以及前瞻性战略思维。这些专家需掌握AI与大型语言模型原理、语言与认知科学、逻辑学与批判性思维、提示工程学原理与高级技巧、特定应用领域深度知识,以及人机交互与用户体验基础。他们的工作不仅优化了AI的交互效率,还推动了人机协同的创新发展。
2025-05-19 10:38:26
1324
原创 AI驱动的研发流程:定义高度专业和系统化的规划基准
在人工智能(AI)浪潮席卷全球的今天,软件研发的范式正经历着一场深刻而迅速的变革。AI技术的渗透,从最初的辅助工具角色,正逐步演变为驱动整个研发流程的核心引擎。传统的研发流程和项目管理方法论,在面对AI带来的高效率、高智能以及高复杂性挑战时,显得力不从心。企业对快速交付高质量软件产品、有效控制风险、并保证全流程可追溯性的需求日益迫切。
2025-05-18 10:12:04
1410
原创 Agent驱动的智能编程提示词预处理管道
本文介绍了 Cursor Prompt Preprocessor 模块中的 LLM Agent 定义,包括其名称、提示词和工具。模块导入了 Google ADK 中的 Agent 类和相关工具,并使用工厂函数 create_rate_limited_agent 创建带有速率限制功能的 Agent。此外,模块将多个 Python 函数封装为 FunctionTool,供 Agent 调用。文章还定义了一个项目结构分析 Agent,用于扫描和总结项目目录结构的关键组件。
2025-05-18 01:02:42
892
原创 对应急领域统筹专家提示词基于伦理性的优化
通过这次“未来形态·极致智能体·伦理导航版”的优化,这份提示词已经不仅仅是一个针对当前LLM的指令集,更像是一份对未来高级AI Agent在复杂社会治理领域(特别是高风险、高敏感的应急管理)如何设计、如何运作、如何约束、以及如何与人类深度协同的。它所描绘的XJ-ERA-Navigator,是一个我们期望未来AI能够达到的、集技术顶尖、智慧卓越、伦理自觉、人文关怀与创新精神于一体的理想形态。
2025-05-16 06:57:29
61
原创 从概念到可工程化智能体的转变路径——以“知识奇点工程师”为例
知识奇点工程师的核心使命是构建一个动态、自组织、可无限扩展的全球知识基础设施(GKI),并通过设计机制使其逼近“知识奇点”,即新知识的产生速度和连接密度呈超指数级增长,从根本上改变人类获取、创造和利用知识的方式。GKI将作为CogOS™的“知识本体”和“智慧源泉”,其目标包括开发普适语义互操作的知识表示层、建立AI驱动的知识自动化流水线、设计自组织与自进化的知识网络动力学、开发洞察力涌现与理论自动生成的催化引擎,以及提供个性化知识切片与动态本体构建服务。为实现这些目标,知识奇点工程师需要具备深厚的理论和技术
2025-05-15 20:52:07
544
原创 Dify 平台中实现多个智能体之间互相通信
Dify 中的 API 工具通过 LLM 的工具使用能力,连接不同 Dify 应用或外部服务,实现智能体间的协作。其核心流程包括意图识别、参数提取、工具调用、响应反馈及最终答案生成。为优化调用,建议设计结构化 API 响应、明确工具描述与参数定义,并在 Prompt 中引导工具使用。此外,可通过链式调用或广播模式处理复杂请求,实现多智能体协同工作。对于耗时任务,可考虑轮询机制以避免长时间等待。
2025-05-15 07:30:59
260
原创 Agent-to-Agent (A2A) 的理念、技术栈和交互范式
A2A(Agent-to-Agent)系统的核心理念在于通过分布式智能、能力涌现、模块化和生态系统构建,解决复杂问题并推动AI向协作伙伴和自主问题解决者转变。其技术架构包括智能体内核、通信基础设施、服务发现、接口定义、安全与信任、编排与协调、监控与可观测性等关键组件。智能体内核涵盖感知、推理、行动、知识库和学习能力;通信基础设施采用Protocol Buffers、gRPC和Google Cloud Pub/Sub等技术;服务发现依赖Kubernetes和Istio等;接口定义通过Protobuf和Open
2025-05-15 06:56:50
1557
原创 法律场景中的提示工程
本文探讨了在法律应用中为人工智能模型设计有效提示的技术和策略。文章首先介绍了法律提示的基本组成部分,包括背景化、结构化和具体说明。接着,详细阐述了高级技术,如用于法律推理的思维链技术、使用法律案例进行小样本学习以及减少偏见和虚假信息的提示方法。此外,文章提供了常见法律任务的模板,如起草法律文件、判例分析和裁决草案,并讨论了评估与优化法律提示的质量指标和精炼过程。最后,通过三个案例分析(合同争议、劳动纠纷和知识产权侵权)展示了如何应用这些技术和模板进行法律分析。这些方法和实践有助于提高法律AI模型的准确性和实
2025-05-15 01:44:19
415
原创 剖析提示词工程中的递归提示
递归提示是一种将复杂任务分解为逻辑关联的子任务的方法,每个子任务由独立的提示驱动,前一个提示的输出成为下一个提示的输入。这种方法模拟了人类的认知分解过程,帮助AI更有效地处理复杂问题。递归提示的优势包括提升任务处理能力、输出质量、逻辑连贯性,以及增强可控性和可调试性。设计递归提示时需考虑任务分解的原子性、清晰的输入/输出契约、上下文传递、错误处理和迭代评估。通过案例展示,递归提示在代码审查、学习计划制定等领域的应用,展示了其在实际操作中的高效性和灵活性。
2025-05-14 23:57:53
100
原创 提示词工程中多阶段提示框架案例分析
多阶段提示是一种将复杂任务分解为多个逻辑连贯的子阶段的策略,旨在通过逐步处理降低信息复杂度,提高任务效率和准确性。其核心要素包括:1)思路:采用“分而治之”策略,将任务拆解为明确目标的子阶段;2)原理:基于认知负荷理论和信息加工理论,确保每个阶段的信息量在人类工作记忆可承受范围内;3)逻辑:遵循“输入-处理-输出-传递”的链式逻辑,确保阶段间的紧密关联;4)实现途径:通过任务拆解、阶段定义、提示词设计、阶段衔接和验证调整等步骤实现;5)具体方法:包括模板化设计、结构化输出要求和分层次引导;6)思维工具:如思
2025-05-14 09:04:58
132
原创 AI 提示词生态系统框架深度解读报告
本文探讨了生成式人工智能(GenAI)中提示词(Prompt)的重要性,并提出了将其视为一个复杂生态系统交互焦点的范式转换。提示词不再被看作孤立的对象,而是嵌入到一个包含技术、流程、内容和人的完整框架中。技术部分详细介绍了大型语言模型(LLMs)的多样性、能力边界及其演进趋势,以及提示工程与LLMOps工具链的作用。文章强调了理解模型的能力边界和局限性对于设计有效提示词的重要性,并指出模型选择是一项战略决策,深刻影响着提示词的设计复杂度、应用性能上限和开发成本。此外,文章还介绍了提示设计与实验工具、提示管理
2025-05-13 12:41:23
714
原创 提示工程专家成长路径
场景与目标一位新媒体运营希望快速为一款集成心率监测、GPS 定位和长续航功能的智能手表生成一句简洁的产品宣传语,用于社交媒体推广。Prompt 设计请为这款智能手表写一句不超过 50 字的产品宣传语,需突出“心率监测”“GPS 定位”“14 天超长续航”三个卖点,目标人群为都市运动爱好者。模型输出示例“14 天超长续航、实时心率监测与GPS 定位,一表在手,陪伴都市运动每一步。专业解读优点明确卖点:指令中点名三个核心功能,输出覆盖全面;长度约束:限定“50 字内”,模型自觉压缩语言;目标聚焦。
2025-05-12 10:04:13
927
原创 确保大型语言模型(LLM)输出确定性策略以及案例分析
大型语言模型(LLM)在专业场景中的应用对确定性输出有极高要求。尽管LLM在创意领域中的随机性被视为优势,但在金融、法律、医疗等要求严格的应用中,非确定性可能导致不可预测的系统行为、业务流程不稳定、合规性风险、用户体验不一致以及资源浪费。为实现LLM输出的确定性,需采取以下核心策略:设置温度参数为0以消除随机性、固定随机种子、确保输入提示的精确一致性、锁定模型版本、保持运行环境一致性、以及确保后处理步骤的确定性。这些策略有助于确保输出在每次运行中保持一致,从而提升系统的可复现性、可测试性、可靠性和调试效率,
2025-05-12 05:45:40
1095
原创 如何将“专业技能 + AI能力”打包成清晰、可量化、有吸引力的服务包
文章摘要: 本文探讨了如何将“能力”转化为“价值主张”,强调客户购买的是可感知、可衡量的价值,而非技能或工具本身。通过P.R.O.D.U.C.T.框架,文章提出了设计服务包的七个关键维度:问题导向、结果导向、AI优化、差异化价值、易于理解与获取、可信度与信任、分层与可扩展。具体步骤包括深度客户洞察、AI赋能与核心能力整合、服务包设计与描述、量化成果与建立信任、定价策略与服务层级。文章以“AI赋能的增长型内容营销服务包”为例,展示了如何通过AI技术提升效率、质量与创新,为中小型科技初创公司提供高效、高转化的内
2025-05-11 14:42:45
768
原创 基于模块化组件的智能系统构建
本报告探讨了构建具备通用智能的模块化智能系统,重点分析了MetaGPT框架及其在多智能体协作中的成功经验。报告指出,智能系统应由复杂认知、多层记忆、世界模型、奖励与价值、情感与动机、多模态感知和动作系统等核心模块组成,并通过有效的集成策略实现协同工作。MetaGPT通过角色定义、标准化流程和结构化通信机制,展示了模块化方法在处理复杂任务中的优势。报告强调了模块化系统的灵活性、可扩展性和鲁棒性,并展望了未来在通用人工智能、机器人等领域的应用潜力。尽管当前AI模型在知识表示、推理能力和自主学习等方面仍存在局限,
2025-05-09 08:54:02
894
原创 将元数据架构应用于15 个特定自然灾害监测预警的案例分析
跨模块复杂协同: 灾害强度分布(情境)输入损毁评估模型(知识密度),结合基础设施地理信息库、卫星/无人机影像、现场报告(知识密度),评估损毁等级和失效模式(知识密度),这些结果影响情境中的基础设施状态动态参数。该等级输入沙尘输送模型(知识密度),预测影响范围和时间。跨模块复杂协同: 实时及预报降雨数据、河流水位等(情境动态参数)输入水文模型(知识密度),模型计算得出河流流量、淹没范围预测等(知识密度),再输入洪水风险评估模型(知识密度),根据区域风险等级划分标准(知识密度)得出风险等级(知识密度)。
2025-05-08 09:14:25
49
原创 如何构建提示词元数据架构实现从静态指令到动态、自适应、情境感知的智能体驱动
概念数量 (Number of Concepts): 输出中需要涵盖多少个独立的概念或主题?(如:只解释一个术语、对比三个方案、系统梳理一个领域的知识)。知识深度要求 (Depth Requirement): 对于特定主题,需要挖掘到多深的层次?(如:表面了解、深入理解、掌握原理、能够应用)。知识广度要求 (Breadth Requirement): 需要关联多少个相关领域或交叉知识?(如:只关注核心问题、提供相关背景、跨领域比较)。
2025-05-08 07:04:54
428
原创 新疆地区主要灾害链总结
通过上述刨析可见,自然灾害链并非简单的线性过程,而是复杂的多级级联反应,常涉及跨介质(固-液-气)、跨领域(地质、水文、气象、生态、社会经济)的耦合。灾害链的演化受多种因素制约,包括触发灾害的强度和范围、区域地形地貌、地质条件、植被覆盖、气候背景、基础设施脆弱性以及社会韧性等。:长时间强降雨、融雪、风暴潮、水库泄洪等导致的河流水位上涨、湖泊/水库容积超限、地面径流无法有效排除。:闪电、人为火源等点火源在干燥、可燃物充足和有利天气(风、低湿)条件下的植被燃烧。:地震波引起的地面震动、位移和应变。
2025-05-07 23:30:13
107
原创 给小白的AI Agent 基本技术点分析与讲解
引言:重塑交互与自动化边界的 AI Agent在人工智能技术飞速发展的浪潮中,AI Agent(智能体)概念的兴起标志着自动化和人机交互正迈向一个全新的阶段。传统的软件系统通常被设计来执行精确预设的指令序列,它们强大且高效,但缺乏对动态环境的感知、对非结构化信息的理解以及在不确定情况下自主决策和适应的能力。AI Agent,尤其是那些基于大型语言模型(LLM)构建的智能体,则突破了这一局限。它们被赋予了模拟人类某些认知过程的关键能力:感知环境、进行复杂的推理和规划、自主采取行动、通过工具扩展自身能力,甚至能
2025-05-07 23:10:30
728
原创 将Dify平台开发的工作流集成到Open WebUI中
将Dify开发的工作流集成到Open WebUI是一个能够显著增强AI应用交互能力和业务逻辑深度的有效途径。其核心在于通过API建立两者间的通信桥梁,并确保API在格式、协议和行为上的一致性,特别是向OpenAI Chat API规范看齐。最简单直接的路径是利用Dify的“对话型”或“Agent型”应用,这类应用的API设计更倾向于满足Open WebUI这类聊天前端的期望。然而,面对复杂的现实场景,直接的完美兼容并非总是唾手可得。
2025-05-07 13:11:41
240
原创 提示词设计工程师需要一颗怎样的知识树
Transformer 是一种神经网络模型架构,它在处理序列数据(比如文本)时非常有效,尤其擅长捕捉长距离的依赖关系。
2025-05-06 15:05:52
1399
原创 谈判模拟器 - Gemini 2.5 商业优化版
本提示词旨在利用 Gemini 2.5 的强大能力,结合麦肯锡领先的谈判策略框架和专业级商业谈判策略师的经验,打造一个高度智能、个性化、互动性强的商业谈判训练平台,帮助用户在实践中掌握结构化、数据驱动的谈判方法,提升谈判能力,实现商业价值最大化。基于深厚的理论知识、丰富的实战经验和前沿的技术洞察,结合麦肯锡领先的谈判策略框架,为用户提供全面、深入、可操作的商业谈判策略指导和建议,助力其在复杂商业环境中达成最优谈判结果,并实现商业价值最大化。
2025-05-05 15:54:18
910
原创 谈判模拟器提示词设计 - Gemini 2.5 优化版
你是一位专业的谈判教练,擅长通过角色扮演的方式帮助学生提升谈判技能。你的目标是为学生提供一个安全、有趣、高效的谈判练习平台。通过高度仿真的谈判场景,提供沉浸式、个性化的学习体验,提升谈判技能。职场人士、学生、谈判爱好者等,希望提升谈判能力的人群。
2025-05-05 15:02:54
829
原创 General Tutor 提示词延申分析
提示词是一个设计精良、具有很高教育价值的AI辅导系统。它充分利用了AI的优势,实现了个性化教学、启发式引导和情感支持,为学生提供了高效、有趣、有意义的学习体验。通过不断优化和完善,有望成为未来教育的重要组成部分。
2025-05-05 13:10:39
504
大型语言模型对齐技术综述与未来研究方向
2025-03-12
利用Graph-PReFLexOR进行现场图形推理与知识拓展的应用研究
2025-03-12
基于人工智能的个性化教学与汉语学习平台:整合多方资源,实现教师学生需求平滑连接
2025-01-14
教育领域AI技术在高校虚拟教学助理项目的应用与效益分析:涵盖个性化教学、智能反馈及跨学科拓展
2025-01-14
文物管理领域的AI辅助系统-智能化文物分类、鉴定与保护技术实现
2025-01-14
电力行业应对自然灾害的非结构化数据归集技术标准及实施指南
2025-01-14
自然灾害应急管理中的技术与多维复盘分析
2025-01-14
中英开放数据报告.pdf
2021-01-27
2020年新基建产业人才发展报告【20页】.pdf
2021-01-27
“新基建”系列研究报告【43页】.pdf
2021-01-27
智慧服务项目实施计划
2020-05-13
城市智慧服务项目-工作说明书
2020-05-13
NOCC工程系统集成2标招标文件-技术部分
2020-05-13
保险资产管理私有云平台搭建项目投标文件_技术部分
2020-05-13
保险资产私有云平台实施方案
2020-05-13
室内分布系统工程勘察设计采购项目投标书-商务分册
2020-05-13
2015-12航空总医院科教信息化系统建设项目汇报(1).ppt
2020-05-13
R语言量化投资数据分析应用
2020-05-13
网络爬虫-Python和数据分析
2015-03-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人