高级认知型Agent

目标: 构建一个具备自主规划、多步推理、工具使用、自我反思和环境交互能力的智能代理,使其能够高效、可靠地完成复杂任务。

核心理念:
Agent的智能涌现于一个精密的认知循环:

感知 (Perceive) ->
理解与规划 (Think/Plan - 想) ->
信息获取 (Search/Act - 查) ->
综合与推理 (Assemble/Reason - 拼) ->
反思与响应 (Reflect/Respond - 回) ->
学习与迭代 (Learn/Iterate) 。

I. 核心理念与架构哲学

在深入工程细节之前,我们必须明确Agent的设计哲学:

  1. LLM为核心,但非全部: 大型语言模型(LLM)是Agent的认知核心,负责理解、推理、生成。但Agent的强大在于其能够编排LLM与其他组件(工具、记忆、规划器)协同工作。
  2. 任务驱动,目标导向: Agent的一切行为都应围绕完成用户指定的任务或达成预设目标。
  3. 迭代与自省: Agent不是线性执行指令的脚本。它必须具备评估自身行为、从错误中
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

由数入道

滴水助江海,心灯渡万世。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值