依次解析:
1)认知模拟与高级推理范式 →
2)模型架构与训练层面的优化 →
3)评估与验证的深度协议。
这不仅关乎技术,更关乎如何构建真正理解世界、解决问题且负责任的智能系统。
🧠 1. 认知模拟与高级推理范式:让AI更像“思考者”而非“复读机”
这类框架的核心是突破当前LLM的统计模式匹配局限,赋予其类人的认知能力——理解因果、规划未来、反思自我、感知环境并行动。这是通向通用人工智能(AGI)的关键阶梯。
核心概念深度解析:
-
具身智能与感知-行动循环 (Embodied AI & Perception-Action Loop)
- 本质揭示: AI不再是“纸上谈兵”,而是拥有虚拟或物理“身体”,能通过传感器(视觉/听觉等)感知环境,基于目标规划行动(移动、操作),并根据行动结果更新对世界的