引言:迈向智能驱动的软件工程新范式
本文是一份关于构建和实施“AI驱动的全生命周期软件工程范式”的简要集成指南。它旨在提供一个独立、完整、具体的框架,指导组织如何将AI智能体深度融合到软件开发的每一个环节,实现从概念到运维的智能化转型。
第一部分:核心思想与原则 (构建智能工程的哲学基础)
1. 范式核心:人机协同的智能工程生命周期系统
该范式将软件开发视为一个由人类智慧与分布式AI智能体协同运作的“智能工程系统”。AI智能体不仅仅是工具,更是核心的“虚拟工程师”和“智能工程基础设施”,它们参与到决策、分析、学习、创造和执行的全过程。
2. 核心原则:支撑智能工程系统的基石
- 智能体中心化: 项目生命周期内的所有活动被视为由不同类型AI智能体与人类协同执行的“工作流节点”。
- 知识驱动的决策: 所有决策均基于系统化的“知识图谱”和AI的分析推理能力。
- 协同智能: 通过人与AI、AI与AI之间的无缝协同,产生超越个体能力的“集体智慧”。
- 自适应与自进化: 整个工程体系具备自我学习、自我优化、自我适应的能力,能够根据项目需求和AI技术发展进行迭代。
- 可解释性与可控性: AI的行为和决策过程对人类是可理解的,并且人类具备有效的控制和干预机制。
- 工程资产的动态生命周期: 代码、设计、需求、测试等被视为可管理、可复用、可进化的“工程资产”,并拥有完整的生命周期管理。
- 安全、合规与伦理: 体系内置安全、合规检查,并遵循AI伦理原则,确保负责任的AI应用。
3. 软件工程特征:
- 泛在的AI辅助与自动化: AI无处不在,自动化绝大多数低价值、重复性的任务,如代码生成、测试编写、文档创建、日志分析。
- 人类角色的升级: 人类将更多地扮演战略规划师、领域专家、智能体协调者、质量监督者和创新激发者的角色,而非纯粹的执行者。
- 知识的价值最大化: 软件开发过程本身成为高度结构化的知识生产过程,AI是知识的发现者、组织者和传播者。
- 实时反馈与快速迭代: AI提供的即时分析和反馈,极大地加速了开发、测试和优化的反馈循环。
- “低代码/零代码”理念的扩展: AI能够根据高层指令和领域知识,自动生成大部分甚至全部的实现代码。
第二部分:体系架构蓝图 (智能工程操作系统的构成)
本体系被设计为一个多层、模块化、接口化、流程化的架构,以实现通用性、可插拔性和可演进性。
1. 基础设施层:智能工程运行平台 (The Smart Engineering OS)
该层提供运行整个AI驱动工程体系所需的核心能力和支撑服务。
- 1.1. AI智能体注册与发现中心:
- 功能: 管理系统中所有可用的AI智能体,注册其能力描述、接口协议、版本信息、健康状态。为其他组件提供查找和连接AI智能体的能力。
- 1.2. AI智能体通信与编排总线 (ACAO Bus):
- 功能: 实现AI智能体之间的异步/同步通信、事件传递、任务调度与编排。它是系统中AI智能体之间信息交互和流程协调的“神经系统”。
- 技术示例: 基于消息队列 (如Kafka, RabbitMQ) 和API网关的组合。
- 1.3. 知识图谱与工程资产库 (KGER):
- 功能: 统一存储和管理所有项目数据(需求、设计、代码、文档、测试结果、日志)、提取的知识、AI生成的工程资产(如代码组件、流程模板、Prompt模板)以及AI行为记录。提供高效的查询、检索和版本管理能力。
- 技术示例: 图数据库 (如Neo4j) 用于知识图谱,搜索服务 (如Elasticsearch) 用于快速检索,对象存储用于代码组件等。
- 1.4. AI行为可观测性与控制平台 (AOCP):
- 功能: 实时监控AI智能体的运行状态、性能指标(响应时间、成功率、资源消耗)、产出质量。提供AI行为的干预、调试接口(如查看输入输出、调整模型参数)。
- 1.5. 安全与合规守护者 (SCG):
- 功能: 内嵌于平台,负责执行安全策略(如数据访问控制、API安全)、合规检查(如代码许可、数据隐私)、AI伦理原则的强制执行。
2. 智能体层:分布式AI智能体网络 (The Distributed AI Workforce)
该层由一系列具备特定智能能力的AI实体组成,它们通过基础设施层进行通信和协调。
- 2.1. 智能需求分析体 (SRAA - Smart Requirement Analyst Agent):
- 核心能力: 解析自然语言需求,识别关键信息、用户故事、非功能性需求;识别需求中的模糊性、冲突和遗漏;进行技术可行性初步评估和风险识别;推荐可能的技术栈、架构模式和设计原则。
- 实例化示例: 通过API接入的大型语言模型(LLM),如GPT-4, Claude 3,并配合专门的Prompt Engineering模块。
- 输入接口示例:
POST /analyze_requirements
(接收JSON格式数据,包含原始需求文本、项目上下文信息、技术约束等)。 - 输出接口示例: 返回JSON格式数据,包含结构化需求摘要、风险列表、技术建议、潜在问题点列表等。
- 2.2. 智能设计生成体 (SDGA - Smart Design Generator Agent):
- 核心能力: 根据结构化需求和技术约束,生成高层架构图描述、模块划分建议、API接口定义(如OpenAPI/Swagger)、数据库Schema草稿、设计模式应用示例。
- 实例化示例: LLM结合Prompt Engineering模块,或专业AI辅助设计工具。
- 输入接口示例:
POST /generate_design
(接收JSON格式数据,包含需求摘要、技术约束、所需的输出格式、以及指向所需知识的标识符)。 - 输出接口示例: 返回JSON格式数据,指定了输出的工件类型(如“Architecture Description”)、内容(文本或结构化数据)和格式(如“Markdown”、“PlantUML”、“JSON”、“SQL”)。
- 2.3. 智能代码实现体 (SCIA - Smart Code Implementer Agent):
- 核心能力: 根据详细设计或自然语言指令,生成代码片段、函数、类、脚本;执行代码补全;编写单元测试用例;进行代码转换(如将一种语言转换为另一种,或将代码适应不同的框架)。
- 实例化示例: 集成在IDE中的AI代码助手(如GitHub Copilot, CodeWhisperer, Tabnine),或通过SDK调用的代码生成模型。
- 接口: IDE插件API,代码生成SDK,CLI接口。
- 输出: 生成的代码文本、测试用例文本、脚本文本。
- 2.4. 智能代码分析体 (SCAA - Smart Code Analyzer Agent):
- 核心能力: 进行代码静态分析,识别潜在的Bug、安全漏洞、代码异味、性能瓶颈;评估代码质量、可读性、可维护性;生成代码审查报告。
- 实例化示例: 集成到CI/CD流水线的静态代码分析工具(如SonarQube AI版),或通过API调用的代码分析模型。
- 接口: CI/CD集成接口,CLI API,或直接的SDK接口。
- 输出: 标准化的分析报告(如JSON, XML),包含发现的问题列表、严重性、建议修复方案。
- 2.5. 智能交互式协作体 (SICA - Smart Interactive Collaborator Agent):
- 核心能力: 在代码编辑环境中提供即时的代码解释、重构建议、上下文感知代码补全;通过自然语言对话进行迭代式的设计交流和代码修改。
- 实例化示例: 集成在IDE中的AI聊天和代码编辑助手(如Cursor IDE, VS Code with Copilot Chat)。
- 接口: IDE交互接口,允许代码选择与对话交互的联动。
- 输出: 代码解释文本、重构建议代码、对话回复。
- 2.6. 智能工作流协调体 (SWOA - Smart Workflow Orchestrator Agent):
- 核心能力: 自动化执行预定义的工作流,响应来自基础设施层或人类角色的事件触发,调度其他AI智能体和人类节点的任务执行顺序,管理流程状态。
- 实例化示例: CI/CD平台(如Jenkins, GitHub Actions, GitLab CI),工作流引擎(如Argo Workflows, Camunda)。
- 接口: CI/CD/工作流平台API,或通过脚本触发。
- 输出: 执行指令,任务状态更新。
- 2.7. 智能知识管理体 (SKMA - Smart Knowledge Manager Agent):
- 核心能力: 从项目所有数据(代码、需求、日志、文档、讨论)中自动提取、分类、索引知识;构建和维护项目知识图谱;提供智能问答和信息检索服务;管理工程资产库(代码组件、Prompt模板、流程模板等)。
- 实例化示例: 结合图数据库、搜索服务和知识库平台,并通过API与LLM集成以提供问答能力。
- 接口: 图数据库查询语言 (如Cypher, Gremlin), 搜索服务API, REST API for Knowledge Curation and Asset Management。
- 输出: 结构化知识条目,搜索结果,问答答案,工程资产信息。
3. 流程模块层:生命周期活动中的AI与人协同 (The Orchestrated Workflows)
该层定义了项目生命周期的各个阶段,以及在每个阶段中AI智能体和人类角色的具体协作流程。
-
3.1. 需求分析与定义 (RA&D - Requirement Analysis & Definition):
- 目标: 清晰、准确地定义项目需求,识别潜在风险。
- 核心流程:
- 人类输入: 需求定义师 (RD) 或战略规划师 (SP) 提供原始需求文本、项目背景信息。
- AI处理与分析: SRAA接收输入,通过SKMA查询KGER以获取历史项目需求、领域知识、技术文档等相关信息。SRAA进行需求解析,识别关键信息、用户故事、非功能性需求,评估技术可行性,识别潜在风险和模糊点,并提出初步的技术栈和模式建议。
- AI输出: SRAA生成一份结构化的需求分析报告,包含:需求摘要、已识别的风险列表、技术可行性评估、潜在问题点列表、技术栈与设计模式建议。
- 人机协同与验证: RD与领域专家 (DE) 评审SRAA的分析报告。他们可以利用SICA与SRAA进行交互式问答,澄清需求,深入讨论风险。
- 人类决策与输出: RD在充分理解和讨论后,输出最终的结构化需求规格。
- 知识沉淀: SKMA将本次需求分析的关键信息、讨论要点、最终决策存档至KGER。
-
3.2. 架构设计与技术选型 (AD&TS - Architecture Design & Technology Selection):
- 目标: 设计高层次系统架构,选择合适的技术栈,定义关键接口。
- 核心流程:
- 人类输入: 架构设计师 (AD) 提供已批准的需求摘要和项目技术约束。
- AI辅助设计: SDGA接收输入,通过SKMA查询KGER以获取可复用的架构模式库、技术选型信息、最佳实践。SDGA根据输入生成初步的架构设计草稿(包含高层架构图描述、模块划分建议、API接口定义草稿、数据库Schema草稿)。
- 人机交互式优化: AD与领域专家 (DE) 评审SDGA生成的草稿。他们利用SICA与SDGA进行交互,提出修改意见,请求设计优化,获得实时反馈。SICA还可以提供设计模式的应用解释和潜在风险提示。
- 人类决策与输出: AD在AI的辅助和人类的评审后,定稿架构设计文档和API规范。
- 工程资产化与知识沉淀: SKMA将定稿的架构设计、API规范、数据库Schema等存档至KGER,并将其作为可复用的工程资产进行管理。
-
3.3. 编码实现与单元测试 (CI&UT - Code Implementation & Unit Test):
- 目标: 高效、高质量地实现软件功能代码,并为其编写配套的单元测试。
- 核心流程:
- 人类输入: 执行工程师 (EE) 在集成开发环境 (IDE) 中选择要开发的任务,输入代码指令、函数签名或代码上下文。
- AI生成代码与测试: SCIA(作为IDE插件或通过IDE集成)根据EE的输入,实时生成代码实现和配套的单元测试用例。SICA提供代码解释和重构建议。
- 人机协同与审查: EE审查、修改、集成AI生成的代码和测试。EE可以利用SICA进一步理解代码逻辑或寻求优化方案。
- 自动化质量检查: SCAA(集成在IDE或CI/CD中)实时进行代码风格、基础质量和安全检查。
- 测试执行与反馈: SWOA(通过CI/CD)自动运行SCIA生成的单元测试。测试结果会直接反馈给EE。
- 人类决策与提交: EE确认代码的正确性、质量和测试覆盖率后,将代码提交至版本控制系统 (VCS)。
- 资产沉淀与知识记录: SKMA跟踪和管理合格的AI生成代码组件,更新其元数据和质量等级。记录本次开发的关键决策和学习点。
-
3.4. 集成测试与系统验证 (IT&SV - Integration Test & System Verification):
- 目标: 验证不同模块集成后的整体功能、性能和稳定性。
- 核心流程:
- 代码提交触发: EE提交代码后,SWOA通过CI/CD流水线自动触发测试流程。
- AI分析与建议: SCAA对提交的代码进行全面静态分析,生成质量和安全报告。SCIA根据代码变更和需求,生成集成测试用例建议。
- 测试策略设计与执行: 质量保证工程师 (QAE) 评审SCAA报告和SCIA的测试建议,设计完整的测试策略,并执行测试。
- 问题诊断辅助: 若测试失败,EE或QAE可以利用SRAA,通过查询KGAR(由SKMA提供支持)来辅助分析故障原因,获取历史解决方案。
- 人类决策与修复: EE根据AI分析和测试结果,修复发现的问题。QAE对修复后的代码进行验证。
- 知识沉淀: SKMA记录测试结果、发现的Bug及其解决方案,与相关代码组件和需求关联。
-
3.5. 部署自动化与运维监控 (DA&OM - Deployment Automation & Operations Monitoring):
- 目标: 实现软件的自动化部署,并对生产环境进行实时监控和智能分析。
- 核心流程:
- 部署触发: SWOA响应CI/CD流水线中构建成功的事件。
- AI生成部署脚本: SCIA根据项目配置、目标环境要求(如Kubernetes, Cloud VM),生成部署脚本、CI/CD流水线配置、基础设施即代码 (IaC) 模板。
- 自动化部署执行: SWOA调度SCIA生成的脚本,通过部署工具执行部署流程。
- 部署后监控与分析: 部署成功后,SWOA启动监控,SRAA实时获取生产环境的性能指标(CPU, Memory, Network)和应用程序日志。SRAA通过SKMA查询KGAR以获取历史性能基线、已知问题和排查指南。
- AI驱动的异常检测与预警: SRAA分析监控数据和日志,识别异常模式,并与基线进行对比,触发预警。SRAA还可能提供初步的故障诊断建议。
- 人机协同运维: EE/SysAdmin审查SRAA的分析报告和预警,进行手动干预、深入故障排查或启动自动/半自动回滚流程。
- 知识沉淀: SKMA记录部署结果、监控数据、SRAA的分析报告、识别到的问题及其解决方案,更新至知识库。
-
3.6. 知识沉淀与体系演进 (KM&SE - Knowledge Management & System Evolution):
- 目标: 将项目过程中产生的知识和AI的产出转化为组织级的可复用资产,并持续优化整个工程体系。
- 核心流程:
- 知识与资产采集: 项目各环节的数据(需求分析报告、设计文档、代码、测试结果、日志、运维分析)被视为知识源。SKMA负责从中自动提取结构化知识、代码组件、Prompt模板、流程模板等。
- AI辅助生成与优化: SRAA提取需求层面的洞察,SCIA生成代码组件和Prompt模板,SCAA分析代码质量模式,SWOA分析流程效率,这些都为KM&SE提供了原始素材。
- 人工审查与管理: 知识工程师 (KESA) 负责审查AI提取和生成的知识及资产,确保其准确性、相关性和质量。KESA将审核通过的内容标准化、结构化,并更新至KGAR。
- 体系性能分析与优化建议: SWOA收集整个工程体系的运行数据(AI使用率、各流程阶段效率、成本效益、质量指标)。SRAA分析这些数据,识别体系的瓶颈和优化点,并提出改进建议(如调整AI智能体配置、更新Prompt模板、优化工作流逻辑)。
- 人类决策与体系更新: SP/KESA根据AI分析的建议和人类经验,做出是否更新体系架构、调整AI智能体配置、修改流程模板的决策。
- 持续循环: 将优化后的体系应用于新的项目迭代,形成一个持续学习和自我进化的闭环。
4. 应用层:工程资产库的详细管理与生命周期 (The Intelligent Asset Repository)
该层是存放和管理所有可复用工程资产的地方,确保其质量、可访问性和持续更新。
- 4.1. 工程资产类型与详细元数据标准:
- 代码组件库:
- 元数据:
{id, name, description, language, framework, tags, version, author_ai_agent, author_human_reviewer, creation_date, last_modified_date, quality_grade (Alpha/Beta/Stable/Deprecated), usage_count, feedback_score, dependencies, related_knowledge_ids, ai_generation_context, security_vulnerabilities_found, performance_issues_found}
- 元数据:
- 需求模板库:
- 元数据:
{id, name, description, language, structure_format (e.g., User Story, Feature Spec), ai_prompt_guidelines, example_prompt, associated_risk_patterns}
- 元数据:
- 架构模式库:
- 元数据:
{id, name, description, use_cases, pros, cons, risks, ai_generation_strategy, implementation_guidance, KG_references, quality_grade}
- 元数据:
- AI提示词工程模板库:
- 元数据:
{id, agent_type, scenario, prompt_text, input_vars, output_format, example_input, example_output, scoring_criteria, version, author_human, feedback_score}
- 元数据:
- 自动化流程模板库:
- 元数据:
{id, name, description, triggers, stages, ai_agents_involved, human_roles, dependencies, configuration_parameters, execution_metrics, last_run_status}
- 元数据:
- 代码组件库:
- 4.2. 质量分级与审核流程 (确保AI生成资产的可靠性):
- AI生成: SCIA/SDGA等智能体生成初始代码组件、设计或模板。
- 自动化测试 (SCIA/SWOA): 由SCIA生成,SWOA执行,以验证代码组件的功能正确性和测试覆盖率。
- 静态代码分析 (SCAA): 分析代码质量、安全性和性能。
- 人工审查 (多角色协作):
- EE (执行工程师): 审查代码逻辑、可读性、集成性。
- AD (架构设计师): 审查架构合理性、性能设计。
- DE (领域专家): 验证业务逻辑正确性。
- QAE (质量保证工程师): 验证测试用例的有效性和覆盖率。
- AI辅助诊断与重构: EE可利用SICA获取AI的诊断和重构建议,加速问题解决。
- 质量分级与入库: KESA (知识工程师/体系管理员) 根据所有审查结果,为资产分级(如Alpha, Beta, Stable),并将其元数据完整录入KGAR。
- 使用跟踪与反馈: 通过IDE集成或反馈机制收集EE等用户对资产的使用情况和反馈评分。
- 生命周期管理: KESA/SP/AD定期评审资产的质量等级、使用反馈、相关知识更新情况,决定是否升级版本、维护或废弃资产。
第三部分:管理治理与可持续发展 (保障体系的稳定与健康)
1. AI伦理、责任与合规性框架 (AI Governance)
- 1.1. 决策边界与责任链: 明确AI辅助决策的范围(如建议、草稿),以及人类的最终决策和验收权。AI输出错误的责任由最终审批的人类角色承担。
- 1.2. AI透明度与可解释性: 记录AI智能体的关键决策路径,包括使用的输入数据、Prompt、查询的知识、输出结果。通过AOCP提供AI行为日志,便于审计和调试。
- 1.3. 数据隐私与安全策略: 在传输到AI服务前,对敏感数据进行脱敏或加密。限制AI智能体对生产环境敏感数据的直接访问。使用经过安全认证的AI服务提供商。
- 1.4. 合规性审计与法律遵循: 定期审计AI智能体的活动日志,确保代码生成符合开源许可证要求,数据使用符合隐私法规(如GDPR),AI行为符合内部合规政策。
- 1.5. AI伦理审查: 建立机制审查AI模型是否存在偏见或生成不道德内容,确保AI的使用公平、负责任。
2. 成本管理与效益评估体系 (ROI驱动的AI投入策略)
- 2.1. 成本核算模型: 详细列出AI服务订阅费、API调用费、计算资源费、集成开发与维护成本、人力成本(AI专家、体系管理员)。
- 2.2. 效益量化指标体系:
- 效率指标: 代码生成/补全速度、需求分析时间、问题诊断时间、部署周期等量化缩短。
- 质量指标: Bug密度、安全漏洞数量、代码审查驳回率、测试覆盖率的改善。
- 知识与资产指标: 知识库复用率、工程资产库命中率。
- 开发者体验: 满意度调查。
- 2.3. ROI分析与优化循环: 定期(如季度)评估AI投入的成本与收益,据此优化AI智能体的选择、配置、使用策略,并调整资源分配。
3. 人才培养与组织文化建设 (驱动范式落地的核心)
- 3.1. AI工程能力模型与能力矩阵: 定义从AI使用者到AI架构师的各级技能要求,并进行团队能力评估与培养计划。
- 3.2. 系统化培训体系: 提供通用范式培训、AI智能体专项操作培训、提示词工程工作坊、AI伦理与安全培训,以及知识库和资产库的使用指导。
- 3.3. 组织文化塑造:
- 鼓励创新与实验: 营造允许尝试新AI应用方式的氛围。
- 透明反馈机制: 建立畅通的反馈渠道,收集团队对AI协作的意见。
- 知识共享与互助: 鼓励内部技术分享,传播AI使用经验和成功案例。
- 信任与赋能: 将AI视为增强能力的伙伴,消除抵触,鼓励AI赋能的创新。
4. 体系的可持续演进与治理 (让体系保持生命力与适应性)
- 4.1. AI智能体更新与集成策略: 建立AI技术追踪机制,定期评估并集成更新、更优的AI模型和工具。
- 4.2. 工程资产与知识图谱的持续维护: 通过自动化(AI抽取)和人工(审查、管理)相结合的方式,确保知识库和工程资产的更新与质量。
- 4.3. 工作流模板的动态管理: 提供可视化工具,允许用户根据项目需求和AI能力变化,动态设计、修改和创建AI驱动的工作流模板。
- 4.4. AI行为的可解释性与调试机制:
- AI决策日志与回溯: 记录AI关键行为的上下文、输入、决策过程,便于审计和问题定位。
- AI调试接口: 提供接口允许管理员查看AI状态、参数,并进行干预。
- 4.5. 体系健康度监控与评估: 通过AOCP和SWOA监控AI智能体和流程的性能,结合成本效益分析,持续优化整个工程体系。
第五部分:蓝图与流程
5.1. AI驱动的全生命周期软件工程范式 - 整体框架图 (Mermaid)
5.2. 需求分析与定义 (RA&D) 流程图 (Mermaid)
5.3. 架构设计与技术选型 (AD&TS) 流程图 (Mermaid)
5.4. 编码实现与单元测试 (CI&UT) 流程图 (Mermaid)
5.5. 集成测试与系统验证 (IT&SV) 流程图 (Mermaid)
5.6. 知识管理与体系演进 (KM&SE) 流程图 (Mermaid)
5.1. AI驱动的未来软件工程范式 - 整体框架 (The Smart Engineering OS)
- 图示描述: 展示了体系的四层架构:基础设施层 (Smart Engineering OS),智能体层 (Distributed AI Workforce),流程模块层 (Orchestrated Workflows),以及应用层 (Intelligent Asset Repository)。图示描绘了各层组件之间、AI智能体之间、人类角色与平台/AI之间的交互关系,以及反馈与进化循环。
- 关键元素: Infrastruture Layer (包括Agent Registry, ACAO Bus, KGER, AOCP, SCG), Distributed AI Agents (SRAA, SDGA, SCIA, SCAA, SICA, SWOA, SKMA), Lifecycle Process Modules (RA&D, AD&TS, CI&UT, IT&SV, DA&OM, KM&SE), Human Roles (SP, RD, AD, DE, EE, QAE, KESA), Asset Repository (各种库)。
5.2. 各生命周期阶段的AI人机协同流程图: (请参考前述版本中提供的详细流程图)
- RA&D流程: 展示了人类(RD/SP)如何输入需求,SRAA如何分析,以及人机如何交互细化。
- AD&TS流程: 展示了人类(AD)如何输入约束,SDGA如何生成设计草稿,SICA如何辅助优化。
- CI&UT流程: 展示了EE如何与SCIA/SICA协同编写代码和测试。
- IT&SV流程: 展示了代码提交如何触发SCAA/SCIA分析和测试,以及人机如何协作验证。
- DA&OM流程: 展示了SCIA如何生成部署脚本,SRAA如何分析运维数据,以及人机如何协同操作。
- KM&SE流程: 展示了知识的抽取、生成、管理和体系的持续优化闭环。
5.3. AI智能体内部工作流程图 (示例: SDGA)
- 图示描述: 以SDGA为例,展示了一个AI智能体内部是如何工作的。它接收来自人类或平台的输入,通过Prompt Engineering模块、Constraint Solver模块与KGER交互,调用Design Generation Engine生成初步设计,再通过Artifact Formatter输出,并可能与SICA交互进行进一步优化。
- 关键元素: 输入接口, Prompt Engineering, Constraint Solver, Design Generation Engine, Artifact Formatter, KGER Interface, SICA Interface, SWOA Interface, 输出接口。
5.4. 风险与控制点关联图:
- 图示描述: 将项目生命周期阶段与AI相关的风险点及其对应的控制措施(包括AI智能体和人类角色)进行可视化关联。
- 关键元素: 生命周期阶段 (RA&D等), AI智能体 (SRAA等), 风险点 (如需求模糊, 代码质量低), 控制措施 (如人工评审, AI分析)。
5.5. AI智能体接口定义示例图 (示例: SRAA 输入/输出):
- 图示描述: 以SRAA为例,具体展示其API接口的输入和输出的JSON结构,包括字段名、数据类型和描述。
- 关键元素: API路径 (POST /analyze_requirements), 输入JSON Schema (text, context, constraints), 输出JSON Schema (summary, risks, suggestions)。