1. 提升LLM问答准确率的上下文构建与提示策略
大语言模型在开放领域问答中常面临幻觉和知识过时等问题。为提高回答准确率,上下文工程的关键是在提示中注入相关背景知识与指导。具体策略包括:
-
检索增强 (RAG):通过从知识库中检索相关内容并将其纳入提示,可以显著提升回答的准确性和可信度。Dify 提供了知识检索节点,支持向量数据库存储外部知识,并将检索结果通过上下文变量注入 LLM 提示中。例如,在知识库问答应用中,可先匹配出相关文档段落,赋值给 LLM 节点的上下文变量,再在提示模板适当位置插入该变量,以供模型参考。这样,模型的生成不再仅依赖参数记忆,还能够利用外部知识来作答,有效降低不准确和幻觉。
-
提示注入与预处理:在构造提示时,可以将检索到的背景信息或预先设定的上下文直接嵌入用户提问之前。例如,可以在系统提示中加入明确指令:“请严格根据提供的资料回答”。Dify 的提示编辑器允许开发者通过「/」或「{」快捷插入变量,将上游节点输出(如知识片段、用户信息)融入提示模板。此外,可对用户问题进行预处理:例如利用 Dify 的问题分类器节点将用户意图分类,针对不同类型问题采取不同提示策略(如引入不同领域的知识库上下文),避免答非所问。
-
优化系统提示:精心设计系统级提示可以引导模型更准确回答。例如在系统