引言:AI Agent — 智能自动化的新纪元
人工智能领域正在经历一场深刻的范式变革,其核心驱动力便是 AI Agent(智能体)技术的崛起。AI Agent 不再是传统意义上被动执行预设指令的软件程序,而是一种具备自主性的实体。它被设计为能够在一个循环中持续地与环境交互:首先通过各种传感器或数据接口 感知 (Perceive) 环境状态;然后基于其内部目标、知识库和推理能力进行 决策 (Decide);接着通过执行器或 API 调用采取 行动 (Act) 以改变环境或达成目标;最关键的是,它能够从行动的结果和外部反馈中 学习 (Learn),从而持续优化其未来的行为。
基于大型语言模型(LLM)的 AI Agent 尤其引人注目,因为它们利用了 LLM 前所未有的自然语言理解、生成和常识推理能力。这使得 Agent 能够理解高层次的、模糊的人类指令,并自主地将其分解为具体的、可执行的任务序列。通过与外部工具和数据源的动态集成,这些 Agent 突破了 LLM 自身静态知识的局限,能够在复杂、动态且充满不确定性的现实世界(无论是数字世界还是物理世界)中有效地执行任务。本文将系统性地剖析支撑这一强大能力的核心技术概念,并深入探讨其设计、实现与应用的最佳实践。
一、AI Agent 的四大基石:核心概念深度解析
高级 AI Agent 的能力构建在四个紧密关联的核心概念之上:反思(Refl