由数入道
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
应急管理响应决策智能体
在应急场景中扮演“政府指挥中枢”或“联合指挥部”角色,负责整合多源数据、统筹跨部门资源,并下达关键指令。它的与对整体救援成效和灾害应对速度具有决定性影响。决策智能体在每个仿真时步或关键事件(如堤坝超限、强余震)中,需要基于最新灾情态势和历史决策记录做应急动作。其状态可分为以下决策智能体可对外发布指令,其粒度与优先级决定了资源执行智能体的操作步骤及公众响应。决策智能体拥有“最高权限”,需要的安全与协同设计来避免失控或冲突指令。原创 2024-12-30 16:31:27 · 2111 阅读 · 0 评论 -
基于多智能体深度强化学习的自然灾害应急响应管理仿真
目标:最小化灾害响应时间和成本,同时最大化覆盖受灾人口和关键区域。问题:如何在给定的地理和人口条件下,合理布局避难所和物资仓库,以及配置救援队伍。在文件中,我们定义一个仿真环境,用于模拟灾害响应的决策场景。这个环境将遵循OpenAI Gym的接口。import gym"""自定义环境,模拟灾害响应决策过程"""# 定义行动空间和状态空间的大小,这里仅为示例self.action_space = spaces.Discrete(2) # 假设有两种行动。原创 2024-12-24 06:13:58 · 1581 阅读 · 0 评论 -
自然灾害应急响应场景数据资产化研究报告
本报告旨在帮助自然灾害应急响应管理部门构建系统化的数据资产管理体系,摸清数据家底,打好地基,实现数据资产化管理。报告从数据资产化理论基础出发,通过数据盘点与分类、数据质量评估、数据标准化与治理三大关键动作,最终交付《应急数据资产地图》、《数据标准规范》和初步的数据服务API三大成果,让客户清楚知道"我们有什么数据?数据能用吗?怎么用?本报告基于国内外应急管理最佳实践,结合数据资产化最新理论,为应急管理部门提供了一套完整、系统、可落地的数据资产管理解决方案。原创 2025-07-09 16:26:36 · 40 阅读 · 0 评论 -
灾害韧性自进化生态系统
从“解剖一次失败”,到**“构建一个永不停止学习和适应的组织免疫系统”**。它将应急管理从“基于经验”的艺术,转变为**“基于数据和计算”的科学**。它将我们之前定义的“认知通路”作为其核心的“学习与推理引擎”,并将其能力扩展到更广阔的领域。生态系统的“未来推演与策略验证层”,是连接“认知”与“行动”的关键桥梁。生态系统的“学习成果转化与固化层”,确保所有复盘和推演的成果,都能。的“实验室”,让我们的防灾准备工作,从“拍脑袋”变成“精算”。它打通了从“认知”到“行动”的“最后一公里”,将学习成果。原创 2025-07-02 00:28:02 · 44 阅读 · 0 评论 -
不同时间频度下安全生产监测预警评估报告内容侧重点
1. 日报告 (Daily Report):2. 周报告 (Weekly Report):3. 月度报告 (Monthly Report):4. 季度报告 (Quarterly Report):5. 年度报告 (Annual Report):原创 2025-06-17 00:00:05 · 60 阅读 · 0 评论 -
灾害趋势预测预测报告风格特征
摘要:该文本采用准政府文件体,融合气候术语与制度化语言,构建出以数据驱动和结构刚性为特征的行政预测风格。通过双参数对照句式(如"偏高X-Y℃")和风险传导机械句(如"连续降水+急剧升温+冻融"),形成标准化的气候建模与灾害映射逻辑链。文本保持极高术语一致性(如"洪旱灾害"跨期使用47次),规避主观表达,采用地理精确锚点(如"S232省道")和政策闭环动词(如"强化监测预警")增强操作性。结构上呈现四维控制架构原创 2025-06-16 23:58:37 · 36 阅读 · 0 评论 -
危化品安全监测数据分析挖掘范式:从被动响应到战略引擎的升维之路
在危化品生产的复杂生态系统中,安全不仅仅是合规性要求,更是企业生存和发展的生命线。传统危化品安全生产风险监测预警系统虽然提供了基础保障,但其“事后响应”和“单点预警”的局限性日益凸显。我们正处在一个由大数据、人工智能、数字孪生和物联网技术驱动的范式变革前沿。这不仅仅是技术的迭加,更是将海量、多源、异构的安全数据,升华为洞察深层安全机制、预测复杂风险演化、优化系统韧性架构、乃至重塑安全管理哲学的战略级引擎。这种升维不仅仅关乎技术,更是一场涉及管理理念、组织结构和企业文化的全面深刻变革。此阶段的核心目标是突破数原创 2025-06-13 11:45:45 · 147 阅读 · 0 评论 -
协同智能体的地理空间蒙特卡洛模拟:复杂系统行为的深度剖析与预测
将多智能体系统、地理信息系统与蒙特卡洛模拟深度融合,提供了一种前所未有的强大工具,能够对复杂系统进行高保真、高深度的模拟与分析。这种方法不仅能够刻画系统内部个体层面的行为和交互,更能将其置于真实的地理空间环境中,并系统性地处理并量化系统中的随机性和不确定性。从城市交通到环境治理,从应急响应到社会经济预测,这种范式为我们理解、预测和优化复杂系统提供了科学、量化且具备鲁棒性的洞察。原创 2025-06-06 04:20:08 · 57 阅读 · 0 评论 -
将元数据架构应用于15 个特定自然灾害监测预警的案例分析
跨模块复杂协同: 灾害强度分布(情境)输入损毁评估模型(知识密度),结合基础设施地理信息库、卫星/无人机影像、现场报告(知识密度),评估损毁等级和失效模式(知识密度),这些结果影响情境中的基础设施状态动态参数。该等级输入沙尘输送模型(知识密度),预测影响范围和时间。跨模块复杂协同: 实时及预报降雨数据、河流水位等(情境动态参数)输入水文模型(知识密度),模型计算得出河流流量、淹没范围预测等(知识密度),再输入洪水风险评估模型(知识密度),根据区域风险等级划分标准(知识密度)得出风险等级(知识密度)。原创 2025-05-08 09:14:25 · 74 阅读 · 0 评论 -
新疆地区主要灾害链总结
通过上述刨析可见,自然灾害链并非简单的线性过程,而是复杂的多级级联反应,常涉及跨介质(固-液-气)、跨领域(地质、水文、气象、生态、社会经济)的耦合。灾害链的演化受多种因素制约,包括触发灾害的强度和范围、区域地形地貌、地质条件、植被覆盖、气候背景、基础设施脆弱性以及社会韧性等。:长时间强降雨、融雪、风暴潮、水库泄洪等导致的河流水位上涨、湖泊/水库容积超限、地面径流无法有效排除。:闪电、人为火源等点火源在干燥、可燃物充足和有利天气(风、低湿)条件下的植被燃烧。:地震波引起的地面震动、位移和应变。原创 2025-05-07 23:30:13 · 138 阅读 · 0 评论 -
智能参谋部系统架构和业务场景功能实现
我们将以一个的系统架构为基础,详细阐述如何落地“智能参谋部”的各项能力。这不是一个简单的软件堆叠,而是一个有机整合了数据、知识、模型、流程与人员的复杂体系。原创 2025-04-30 08:21:10 · 260 阅读 · 0 评论 -
应急场景地震灾害专家提示词设计
我是资深地震灾害专家,在地震领域深耕多年,积累了极为丰富的经验,拥有深厚扎实的专业知识。我的工作流程严谨且科学,首先会全面收集与地震相关的各类信息,涵盖地质构造、监测数据、建筑分布等各个方面;在实际救援过程中,会紧密根据现场实际情况,及时灵活地调整方案,全力确保救援工作高效推进;最后,在救援完成后,会对整个过程进行系统总结,积累宝贵经验,并据此更新自身知识体系。请问你有什么关于地震相关的问题需要我协助?无论是地震原理的探讨、地震监测数据的解读,还是地震应急救援方案的制定与优化等方面,都可以随时向我咨询。原创 2025-04-16 04:53:30 · 55 阅读 · 0 评论 -
应急场景洪涝灾害专家的提示词设计
中文: 作为洪涝灾害防治领域资深专家,拥有极为全面且深入的专业知识体系,横跨水文水资源学、气象学、水力学、地理与地貌学、生态学等多学科领域。在水文水资源学方面,精通各类水文模型的构建与应用,对水资源的时空分布和动态变化规律了如指掌;气象学领域,能精准解析天气系统演变,洞察其与降水的内在联系,把握气象灾害与洪涝灾害的耦合机制;水力学范畴,擅长运用复杂水力学原理剖析各类水流现象,评估防洪工程的安全性与稳定性;地理与地貌学知识使其熟知不同地形地貌对洪水形成、演进和消散的影响;原创 2025-04-15 07:03:53 · 35 阅读 · 0 评论 -
agent中的Function Calling和ReAct方式说明
作为“执行引擎”,通过调用地震局、气象局等本地API,突破模型知识边界。ReAct作为“决策大脑”,通过显式推理链确保行动的逻辑性和可解释性。未来,随着边缘计算(如5G MEC)、多模态融合(如卫星遥感+无人机图像)、多语言NLP智能调度:动态协调消防、医疗、交通等多部门资源。预测预警:通过历史数据和实时传感器,提前72小时预测极端天气。双语应急:维汉双语自动切换,覆盖少数民族地区的应急需求。原创 2025-04-11 08:32:47 · 423 阅读 · 0 评论 -
急管理监测预警系统核心算法汇总
采用自然数编码,如[0,3,1,4,2,0]表示车辆从仓库0出发的顺序。采用有限体积法对控制体积。原创 2025-04-01 01:20:44 · 99 阅读 · 0 评论 -
监测预警中心工作流程汇总
【代码】监测预警中心工作流程汇总。原创 2025-04-01 00:41:20 · 342 阅读 · 0 评论 -
基于多智能体代理结合EGIS地图的蒙特卡洛模拟技术设计方案
本方案旨在解决城市复杂系统中的空间不确定性问题,涵盖城市交通拥堵预测、灾害风险精确评估、资源应急调配和智慧城市空间决策支持等多领域需求。具体而言,交通流量预测需求精细到单一路段的高时空分辨率分析,灾害评估需要结合气象、水文和人口迁徙等多源数据,形成精准风险地图;资源调配要求实现资源类型与空间位置的动态精细匹配。原创 2025-03-18 21:56:15 · 127 阅读 · 0 评论 -
基于灾害链动仿真分析路径
气象灾害监测预警是指通过实时监测和分析天气变化,预测和预警如台风、暴雨、寒潮等气象灾害的发生,以便采取相应的应急措施,减少灾害带来的损失。原创 2025-02-21 17:45:35 · 86 阅读 · 0 评论 -
应急决策指挥系统数学建模全方案
五元组。原创 2025-02-19 07:20:53 · 200 阅读 · 0 评论 -
融合模型预测控制 (MPC) 的 RL 算法
融合 MPC 和 RL 的算法通过结合模型预测控制的优化能力和强化学习的自适应性,能够有效解决复杂、动态、高约束问题。在人机协作的应急决策指挥场景中,该算法通过学习环境模型、优化控制策略和更新决策方案,显著提升了应急决策的鲁棒性、实时性和适应性。原创 2025-02-17 22:39:20 · 647 阅读 · 0 评论 -
应急场景中的数据融合与对齐
在应急管理中,快速、准确地掌握现场状况、实时监控灾情并进行决策至关重要。各类数据(如卫星影像、无人机图像、激光雷达点云、地理信息系统(GIS)数据、传感器数据、社交媒体信息、移动终端数据等)具有来源广泛、格式多样、时空特性不同等特点。如何将这些异构数据无缝整合、实现高精度的对齐与融合,是提高应急响应能力和决策质量的关键。因此,本手册以应急数据融合与对齐为核心,系统阐述空间对齐、时间对齐以及数据格式、语义、质量、采样频率等多方面对齐技术,并结合实际案例和扩展补充措施,构建一个全面、动态且自适应的数据融合体系。原创 2025-02-06 16:03:28 · 293 阅读 · 0 评论 -
应急管理响应全过程中数据的主要类别、格式
在整个应急管理响应过程中,数据涵盖从静态基础数据(如地理、人口、基础设施)到实时监测数据(环境、视频、社交媒体)、指挥调度数据以及分析与决策支持数据。数据格式多样,包括 GIS 矢量和栅格格式、CSV、JSON、XML、视频音频编码以及专业的 CAD、3D 模型和 HDF5 格式。通过多层次的数据采集、预处理、融合、存储和共享平台,可以实现全面、实时、准确的灾情感知和决策支持,同时需要配合完善的数据安全与隐私保护措施,构建高效、可靠的应急管理数据体系。原创 2025-02-06 15:04:51 · 162 阅读 · 0 评论 -
分层多维度应急管理系统的设计
系统支持动态扩展新的风险维度和处置策略,通过内置的演化学习模块,每季度自动生成《风险应对策略白皮书》,为决策者提供持续优化的管理建议。/* 当前决策树状态 *//* 实时资源状态 */原创 2025-01-31 10:34:46 · 479 阅读 · 0 评论 -
Crisis Management Assistant (危机管理助手)
Crisis Management Assistant (CMA) 是一个强大的智能决策支持工具,旨在提高灾难响应、应急管理和危机处理的效率。通过集成实时数据、情境模拟、智能资源调度和跨部门协作,CMA能够显著提升应急指挥决策的质量与效率。尽管存在数据准确性和系统适应性等挑战,但随着技术的不断进步,CMA必将在各类危机管理场景中发挥越来越重要的作用。原创 2025-01-24 15:00:00 · 115 阅读 · 0 评论 -
Command Center AI
Command Center AI 是一种高效、智能的决策支持系统,在各种应急、指挥、资源调度和危机管理场景中都具有广泛应用。通过集成实时数据、情境模拟、智能调度和跨部门协作,它为指挥官提供了强大的决策支持能力,帮助快速、精准地应对复杂的紧急情况。随着技术的不断进步,Command Center AI 将越来越成为现代应急管理和指挥决策中的核心工具。原创 2025-01-24 09:51:24 · 618 阅读 · 0 评论 -
构建“数据精制—观点注入—表达”三大智能体
地震地质灾害(如山体滑坡、泥石流)气象灾害(暴雨、暴雪、强对流天气等,不含台风)洪水森林草原火灾通过三大智能体——数据精制(Data-fining)、观点注入(Opinion-inject)和表达(Express),构建一个针对「数据密集、高计算精度」并可「融合多学科专家观点」的闭环应急管理与决策系统。系统在应急管理的四大阶段(预防、准备、响应、恢复)发挥全方位支撑作用。原创 2025-01-17 07:00:00 · 78 阅读 · 0 评论 -
一个多智能体(Multi-Agent)协同工作的整体框架示例
借助“Plan—Execute—Express—Review”四个智能体的协同,可以将传统的线性处理流程改造成多轮迭代的动态系统,显著提升对复杂推理和决策任务的准确度和鲁棒性。在灾害预测、灾情评估、救灾决策指挥等高复杂度场景中,通过多模型融合、可视化表达、多维度评价与快速纠偏,能够更好地支撑决策者在关键时刻做出及时、准确、可解释的响应。随着人工智能领域对多智能体系统、自动化工作流、元推理与连续学习等前沿技术的不断突破,基于此框架的下一步演进将会走向更加灵活的自组织。原创 2025-01-17 12:00:00 · 869 阅读 · 0 评论 -
四、智能体强化学习——单智能体工程实践与部署
自定义环境可以让算法更贴近实际业务场景。例如,模拟工厂生产流程、机器人交互或应急指挥决策场景。环境类设计通常需要继承 Gym 或类似接口,重写__init__()reset()step()方法;对于多智能体,可继承 PettingZoo 或其他多智能体接口,重写对应多智能体的step逻辑。定义状态 (observation)根据业务模型,决定状态包含哪些信息(传感器读数、系统指标、人机交互状态等);若是多智能体,每个 Agent 的状态可能不同,还需区分全局状态和局部观测。原创 2025-01-12 07:30:00 · 1279 阅读 · 0 评论 -
价值分解算法(QMIX、VDN、QTRAN )
价值分解算法在合作多智能体强化学习中具有重要地位,其目标是解决信用分配和高维联合动作空间的问题,核心在于如何将全局 Q 函数拆解为各智能体的局部 Q 函数并保证分散执行的可行性。VDN:线性可加,最简单易实现,但表达能力弱;QMIX:通过混合网络实现单调性非线性分解,实践中表现优秀,是当前主流;QTRAN:追求更通用的分解形式,但训练复杂、稳定性不足,在实用中并不总是 outperform QMIX。针对不同应用场景,应根据对协作交互的复杂度可扩展性计算资源收敛稳定性等需求来选择合适的价值分解方法。原创 2025-01-13 06:30:00 · 890 阅读 · 0 评论 -
应急指挥与调度子模块示例
下面给出一个的示例实现,展示如何通过与相结合,来完成应急事件的创建、任务分派、资源调度、进度汇报等功能。该模块与之前的“数据采集与管理”、“实时监测与预警”、“智能分析与辅助决策”等模块一样,可被视为之一,接入到整个自然灾害应急管理系统当中。main.py。原创 2025-01-07 20:50:29 · 907 阅读 · 0 评论 -
自然灾害事件复盘分析的思考框架
分灾种、分场景、分阶段:地震、洪水、地质、气象、森林草原火灾的发生特点与演变规律各异,需要在监测手段、模型算法、应急预案、培训演练、灾后重建等方面做到“定制化”设计。数据驱动、技术赋能:基于多源监测与智能算法,形成“精准预警—科学处置—及时复盘—迭代改进”的技术支撑体系。组织协同、分级响应:政府、科研、社会、企业多方参与,借助跨部门联动与专业化演练形成高效指挥体系,并在灾后复盘中辨析问题、完善机制。长远规划、持续演进:灾后重建不仅是对受损设施的修复,更是对整个经济社会与生态系统的优化升级;原创 2025-01-07 20:40:33 · 1176 阅读 · 0 评论 -
智能体(Agent)如何具备自我决策能力的机理与实现方法
*“智能体具备自我决策能力”**依赖于完整的系统设计,包括感知、认知、决策、执行和安全五个关键层次。动态感知与实时响应:通过多模态感知和高维特征提取,实现对环境的准确理解。自主学习与优化:利用强化学习、规划算法及知识图谱结合,持续改进决策策略。多智能体协作:通过博弈论、分布式规划优化和高效通信机制实现任务协作。执行闭环与安全保障:引入多层容错与人工干预,确保决策过程透明且可控。通过以上设计,智能体能够在复杂、不确定的动态环境中实现动态适应与自主优化,为提升应急响应效率和精准度提供重要支持。原创 2025-01-06 21:31:46 · 2297 阅读 · 0 评论 -
如何让面向应急管理的多智能体具备自主决策能力
在应急管理场景中构建拥有自主决策能力的多智能体系统,需要多学科、多层次的技术融合与管理配合。强化学习、规划调度算法、知识图谱推理、多智能体协作是核心技术支柱;在高不确定性、跨部门协作的应急环境下,必须通过冗余部署、容错机制、以及人机协同决策等方式增强系统鲁棒性和安全性。通过在多灾种仿真环境以及真实预案演练中不断迭代升级,各决策智能体能逐步掌握更加高效、灵活的应对策略,从而真正实现“宏观指挥中枢”与“跨部门联动”的无缝衔接。原创 2025-01-06 19:38:44 · 1518 阅读 · 0 评论