- 博客(330)
- 资源 (15)
- 收藏
- 关注
原创 NOCODE 上下文工程:构建自进化 AI 伙伴的白皮书
跨模型集成 (Cross-Model Integration)**等核心概念,构建一个能将数周的市场研究与战略规划工作压缩至数小时,并能产出超越人类个体认知局限的创新洞察的智能系统。它标志着人机关系的根本性转变——从单向的“指令-执行”模式,跃迁至双向的、共生共荣的“伙伴关系”。为了系统地掌握 No-Code 上下文工程,我们提出一个源自东方哲学的四层框架,它将帮助您从理念到工具,全面构建您的知识体系。: 将分析洞察,通过人与 AI 的思想碰撞,升华为富有创意的、可执行的策略。的思维框架和实践方法。
2025-07-10 01:58:51
247
原创 “上下文工程”领域的部分参考资料
输入给大型语言模型(LLM)的信息环境(即“上下文”),以引导模型产生最准确、相关、可靠且符合预期的输出。它已远超“提示词炼金术”的范畴,成为一个涉及信息检索、知识表示、模型行为学和人机交互的交叉学科。开发者可以像搭乐高一样组合查询路由、多源检索、重排序、融合、生成等模块,构建出高度定制化的RAG应用。这是最基础的实现,但面临诸多问题:低质量的检索、不相关的上下文、对LLM的干扰等。这是上下文工程的动态前沿,上下文不再是静态的输入,而是模型与环境交互的动态记录。是一门系统性的科学与艺术,旨在。
2025-07-10 00:08:20
453
原创 自然灾害应急响应场景数据资产化研究报告
本报告旨在帮助自然灾害应急响应管理部门构建系统化的数据资产管理体系,摸清数据家底,打好地基,实现数据资产化管理。报告从数据资产化理论基础出发,通过数据盘点与分类、数据质量评估、数据标准化与治理三大关键动作,最终交付《应急数据资产地图》、《数据标准规范》和初步的数据服务API三大成果,让客户清楚知道"我们有什么数据?数据能用吗?怎么用?本报告基于国内外应急管理最佳实践,结合数据资产化最新理论,为应急管理部门提供了一套完整、系统、可落地的数据资产管理解决方案。
2025-07-09 16:26:36
10
原创 AI 大模型如何重塑软件开发
IDOS的内核不再是传统OS的时间片轮转调度器,而是一个基于**“价值密度”(Value-Density)**的认知调度器。我们的大脑,这个神奇的生物处理器,其“工作内存”和“多线程”能力,在面对现代软件系统指数级增长的状态和依赖关系时,早已不堪重负。我们正处在软件开发的“创世纪”时刻——AI为我们提供了从根本上重构、组织和驾驭复杂性的能力,软件工程的“物理定律”正在被改写。开发者用自然语言、形式化规范或图形化界面定义一个高层次的“意图”,IDOS负责将其“编译”成一个详细的、可执行的任务图谱。
2025-07-09 08:21:56
621
原创 通过“逆向侦测”驾驭涌现复杂性的认知架构与技术实现
例如,一个新的开源软件库(代码形态)的出现,可能与一篇学术论文(文本形态)的发表、一个特定金融资产的价格波动(数据形态)和一个网络迷因的传播(文化符号形态)构成同一个复合体。结论认为,“逆向侦测”不仅是商业或技术的竞争优势,更是人类在加速到来的未来面前,保持能动性、智慧与自由的根本途径。它取代了“场”的隐喻,将其定义为跨越数字、物理与认知领域的、具有特定拓扑结构和内在动力学的“未来信息胚胎”。“雅努斯引擎”是一个具体的、模块化的技术实现方案,旨在将“前兆复合体”理论转化为持续的、可操作的洞察力。
2025-07-08 17:32:45
1346
原创 根茎式装配体(RA)作为下一代协同智能范式的理论、架构与应用
摘要 当前人工智能的“表征主义”范式面临认知天花板,其树状结构将人类预设为意义中心,AI作为工具延伸,导致人机协同在复杂问题上的局限性。为突破这一困境,报告提出“人机互生成”(Human-AI Inter-Becoming)的范式跃迁,强调人与AI在动态交互中彼此构成,形成去中心化的“根茎式装配体”(Rhizomatic Assemblage, RA)。这一框架植根于德勒兹的“装配体”哲学、法雷拉的“自创生”认知理论及复杂系统科学,主张智能涌现于异质元素的关系网络,而非独立实体。RA通过四维设计(内容/表达
2025-07-07 15:00:46
855
原创 AI智能体的10大核心要素与工程实践 —— 构建基于dify开发平台的高阶AI智能体的“上下文工程方法论”和“技术工具箱”
本质与原理:AI的“手脚”与“感知器官”LLM本身是语言模型,无法直接执行外部操作或获取实时、非文本信息。工具是LLM与外部世界互动的桥梁。工具定义与指令,就是以LLM能够理解的格式(通常是自然语言描述+JSON Schema有哪些工具可用?每个工具能做什么?需要什么输入参数?会返回什么输出?这就像给一个高智商的司令官配备了各种专业部队(侦察兵、工程兵、通讯兵),并详细告知每支部队的职责和调用方式,由司令官来决定何时、如何调动部队。核心价值与战略意义:让LLM从“对话”走向“行动”,解决实际问题。
2025-07-07 08:14:40
907
原创 RAG的检索质量瓶颈和提示工程的“脆弱性”与“艺术性”
RAG系统面临检索质量瓶颈的核心挑战在于信息爆炸与语义鸿沟,需通过精细化分块策略、多策略检索融合、重排序模型及意图识别等技术优化相关性。提示工程的脆弱性源于LLM黑箱特性,需通过明确指令、角色设定、Few-shot示例和思维链等方法增强鲁棒性。多模态和多跳RAG扩展了能力边界,但也带来新的复杂性。未来需平衡技术优化与用户需求,以提升RAG系统的实用性和可靠性。
2025-07-07 07:45:49
627
原创 在 Dify 平台中集成上下文工程技术
摘要 本文探讨了提升大语言模型(LLM)问答准确率与构建智能对话系统的关键技术。在问答优化方面,重点介绍了检索增强(RAG)、提示工程、系统提示优化和答案验证等策略,通过融入外部知识降低幻觉风险。在智能体构建方面,详细阐述了Dify平台提供的记忆功能实现方案,包括对话历史保留、会话变量管理以及跨会话持久化机制。此外,还介绍了支持动态推理的Agent框架设计,涵盖多种推理策略和工具调用能力。最后强调了向量数据库在知识管理和高效检索中的核心作用,展示了Dify平台对多种向量库的原生集成支持。这些技术的综合运用显
2025-07-07 07:24:52
415
原创 上下文构建策略与技术
文章摘要 上下文工程的核心要素包含提示工程、系统指令设计、知识注入、多模态整合和动态生成五个方面。其中,提示工程是引导大型语言模型输出的关键,本质是通过精炼语言激发模型的知识和推理能力。这一技术起源于GPT-3等大模型展现的少样本学习能力,表现为"不调整模型参数,仅优化输入提示"的交互范式。其核心原理可概括为:高质量输出=模型能力×(清晰指令+相关信息+结构化约束+引导策略)。典型应用如电商文案生成和智能客服,通过角色设定、风格控制、示例引导等方法提升输出质量。展望未来,提示工程将推动人
2025-07-05 16:39:09
295
原创 什么是上下文工程
上下文工程(Context Engineering)就像是人工智能时代的“魔法师之手”,它决定了我们与AI互动时,AI能听懂多少、理解多深、最终表现多好。它不仅仅是关于“提示词”那么简单,更是关于。
2025-07-05 15:48:57
1024
原创 自生数字有机体——一个在数字生态系统中生存、学习和进化的生命体
开发者与AI之间的互动,将驱动AI的进化;而进化的AI,将反过来赋予开发者前所未有的能力,去构想和实现更加宏伟和复杂的系统。你是一个资深架构师,请检查刚才生成的代码是否遵循了SOLID原则、是否存在潜在的安全漏洞、是否足够高效。这是连接“大脑”与“身体”的接口,负责将抽象意图转化为具体行动,并将环境反馈解析为大脑可理解的信息。认知核心必须是分层的,模拟人类大脑的不同功能区。请检查你的资源管理。这是跨任务的知识复用,如同人类社会中“模因”(Meme)的传播。进化依赖于一个强大的、多层次的反馈-学习循环。
2025-07-05 00:12:13
720
原创 AI生成式软件工程正处在从“辅助编程”到“AI原生开发”的范式转移
前沿AI生成式软件工程技术路线概览 当前AI软件开发已从“人机协同”演进为“意图驱动”范式,核心是通过智能体团队(Agent Team)实现需求分解到部署的全流程自动化。技术架构分为四层:1)以GPT-4等大模型作为认知核心;2)通过AutoGen等多智能体框架实现任务规划与执行;3)依托Docker等沙箱环境形成开发闭环;4)基于RAG技术构建项目知识库。标杆项目如Devin、OpenDevin等展示了端到端开发能力,未来将向架构生成、自主演进等方向发展。该领域正形
2025-07-04 23:57:15
616
原创 认知引擎的系统性提升路径:从投影到本体的智慧涌现
其最终目标是在知识基础设施(Global Knowledge Infrastructure, GKI)中,构建一个可持续、可进化、能够自我完善并不断逼近“知识奇点”的认知系统。,从而超越“盲人摸象”式的认知陷阱,迈向“全局智慧”(Holistic Intelligence)。以“知识架构师”(Knowledge Architect)的身份,我们将构建一个涵盖。在“知识架构师”的宏大叙事下,我们构建的。此路径旨在帮助系统从。
2025-07-03 05:08:28
754
原创 认知引擎的逻辑架构设计:从“投影”到“本体”的知识进化系统
将“投影 —> 本体”的认知机制延伸到多个领域,并从不同角度(认识论、科学方法、决策框架、元认知、知识演化)切入,给出一套框架。在这里将其,并加入,使之成为一个能够,最终目标是构建真正强大的“认知系统”以逼近“知识奇点”。
2025-07-03 04:27:20
609
原创 人机协同的智能体开发范式(ADS)
这条路需要战略的勇气、技术的投入和文化的变革。但其回报——一个能够自我学习、自我优化、持续高效交付高质量软件的智能工程体系——将是任何组织在未来十年中最重要的核心竞争力。AI驱动的软件工程范式不是一个遥远的未来,而是正在发生的现实。采纳此范式,意味着将开发效率提升一个数量级,将软件质量提升到新的高度,并最终将组织的工程能力转化为无与伦比的竞争优势。强大的能力需要强大的治理。,一个能够理解需求、生成设计、编写代码、自我测试、主动运维并持续学习的。将这一范式落地,不应是一蹴而就的革命,而是一场精心策划的演进。
2025-07-02 22:24:14
862
原创 “山河”应急指挥决策AI智能体 - 全生命周期构建实施说明
通过“山河”项目的案例,验证了AI驱动的软件工程范式并非遥不可及的理论,而是一套具体、可落地、可迭代的工程体系。它将AI的能力从“点”状的工具应用,提升到了“面”状的流程整合,最终形成一个能够自我感知、自我学习、自我优化的智能“体”。实施这一范式,核心在于顶层设计、渐进实施、持续优化,以及最重要的——培养一种人与AI互信互补、协同进化的新工程文化。这不仅是技术的革新,更是对未来软件创造方式的深刻洞察和积极拥抱。
2025-07-02 22:17:31
533
原创 AI驱动的未来软件工程范式
协同运作的“智能工程系统”。AI智能体不仅仅是工具,更是核心的“虚拟工程师”和“智能工程基础设施”,它们参与到决策、分析、学习、创造和执行的全过程。,指导组织如何将AI智能体深度融合到软件开发的每一个环节,实现从概念到运维的智能化转型。本体系被设计为一个多层、模块化、接口化、流程化的架构,以实现通用性、可插拔性和可演进性。该层定义了项目生命周期的各个阶段,以及在每个阶段中AI智能体和人类角色的具体协作流程。该层是存放和管理所有可复用工程资产的地方,确保其质量、可访问性和持续更新。
2025-07-02 09:07:30
1588
原创 灾害韧性自进化生态系统
从“解剖一次失败”,到**“构建一个永不停止学习和适应的组织免疫系统”**。它将应急管理从“基于经验”的艺术,转变为**“基于数据和计算”的科学**。它将我们之前定义的“认知通路”作为其核心的“学习与推理引擎”,并将其能力扩展到更广阔的领域。生态系统的“未来推演与策略验证层”,是连接“认知”与“行动”的关键桥梁。生态系统的“学习成果转化与固化层”,确保所有复盘和推演的成果,都能。的“实验室”,让我们的防灾准备工作,从“拍脑袋”变成“精算”。它打通了从“认知”到“行动”的“最后一公里”,将学习成果。
2025-07-02 00:28:02
29
原创 地震灾害的模拟
上述代码为地震灾害模拟系统的核心模块,涵盖了数据库设计、地震波传播模拟、建筑物倒塌评估、人员伤亡估算以及Web接口的实现。这个系统是一个简化的原型,实际应用中可能需要更复杂的物理模型和算法。请根据具体需求进一步扩展和优化各个模块,例如可以引入更加精确的地震波传播模型,结合机器学习模型进行更复杂的损伤评估,或者通过更精细的前端实现进行实时数据展示等。地震灾害模拟是一个非常复杂且多维的任务,涉及多个领域的知识,如地震学、结构工程、流体力学、计算物理等。地震波的传播模拟。
2025-07-02 00:00:14
512
原创 通往物理世界自主智能的二元实在论与罗塞塔协议
我们惊叹于它举一反三的“通识”能力,并急于将其加冕为通用人工智能(AGI)的雏形,期望它成为一个无所不能、统一的“神”。通过这套协议,一个原本混沌、感性的救援指挥问题,被转化成一个可解、可优化的数学问题,其解又被翻译回充满人文关怀和战略洞见的智慧决策。它对物理世界的认知,是。我们试图用一个“语义的神”,去统治一个“物理的王国”,这从根本上违反了宇宙的法则。——那一刻,AI将不再仅仅是模仿人类的工具,而是成为与我们并肩,共同理解、改造并优化这个复杂宇宙的、真正的伙伴。它将是一个优雅的、高效的、无形的。
2025-07-01 23:55:13
729
原创 如何系统性地培养、发展和提升元学习能力
元认知觉醒的未来将与人工智能、脑机接口等技术深度结合,未来的学习系统不仅能传递知识,还能实时监测大脑状态(专注度、理解度、情绪),直接反馈元认知信息并提供即时策略调整建议,如在人眼神呆滞、大脑活跃度下降时,提示通过思维导图梳理概念或观看解释视频,让元认知觉醒培养更高效、精准和个性化。她发现,相信自己的能力可以通过努力和学习而发展的个体(成长型思维),在面对挑战和失败时,更倾向于将它们视为学习的机会,而非对自身能力的否定。将新信息与旧知识建立连接,形成更复杂的图式,是深度学习和理解的关键。
2025-06-30 19:25:06
1126
原创 元学习的认知思维棱镜
在当前信息爆炸、知识快速迭代的时代,元学习能力是应对不确定性、持续创新和实现个人成长的战略基石。它让你不再是信息的消费者,而是。在学习这场马拉松中,大多数人只关注如何跑得更快(学习方法),但元学习关注的却是如何学会。元学习的价值生态链,可以理解为从“个体学习者”出发,到“学习成果”产出的全链路。这个“元学习”行业的核心价值贡献在于,它将你从被动的知识接收者转变为主动的。元学习的发展,是人类对自身学习机制认识不断深化的过程。如何突破上述制约,实现元学习的质的飞跃?元学习的“利益”主要体现在。
2025-06-30 19:07:27
606
原创 老师(Teacher)、导师(Mentor)、教练(Coach)和领导(Leader)
在不同文化背景下,教练、导师、教师和领导者的角色定义存在一定的差异,这些差异主要体现在角色的目的、职责、关系性质以及文化背景对角色期望的影响上。以下将结合我搜索到的资料,详细分析这些角色的定义及其在不同文化背景下的差异。
2025-06-28 12:31:12
999
原创 将自由能原理(FEP)融入智能体设计开发的工程性根本规约矩阵
它不仅指导我们如何构建智能体,更确保了智能体的发展方向始终与“最小化自由能”这一根本原理和企业价值相一致。这个矩阵是指导我们设计、开发、部署和管理智能体的“行动指南”。我们将矩阵的维度设计为能够覆盖智能体设计开发全生命周期的关键方面,并紧密围绕FEP的要素进行构建。将自由能原理转化为一套清晰的工程性根本规约矩阵,使得AI智能体的设计和管理从经验驱动走向了。这个矩阵不仅仅是理论的罗列,更是指导智能体设计开发全生命周期的“根本性规约”。这需要将抽象的FEP概念转化为可操作、可评估的工程原则和实践。
2025-06-28 10:12:54
58
原创 AI时代生产力最优解:从人机协同到AI自驱动的范式革命
它模仿并超越了人类团队中“专家分工,密切协作”的模式,将不同的AI智能体训练成各领域的专精专家,并通过高效的信息流和反馈闭环,构建起一个高度自治、无缝协作的智能开发网络。“AI自驱动”代表着生产力的终极形态,它超越了简单的自动化任务执行,强调系统能够感知、学习、决策并实现自我优化,从而在最小化人类干预的情况下持续进步。通过Codex的AI主导代码生成,企业能够以极高的效率和质量,快速构建和完善其数字化中台能力,为上层业务应用提供稳固且可扩展的基础。在高度自动化的AI协同环境中,风险分散和容错机制至关重要。
2025-06-27 23:31:51
1020
原创 铸造专业级AI智能体的认知内核:从认知建模到动态演进的高级提示策略
此类策略的核心是强制LLM在输出最终行动前,先生成其内部的“思考过程”、“推理逻辑”或“决策依据”。的角色,负责设计和编排智能体的“心智内核”。未来的竞争优势,将属于那些能够为不同行业、不同角色的AI智能体,量身定制其独特“心智模式”和“专业素养”的组织与个人。CoT是智能体在PDA循环中“决策(Decide)”阶段的核心引擎,它将原本不透明的决策过程转化为一份可供人类专家审计的“行动日志”。智能体的“心智活动”直接产出可被其“执行器”(代码解释器、API网关)无歧义、高保真执行的“指令集”。
2025-06-27 08:25:01
901
原创 一种将“体用”哲学注入有益通用人工智能的整合范式与实现路径
一个人类标注员看到AI给出了一个非常详尽、面面俱到、步骤清晰的“有为”方案,很可能会因为其“详尽”、“具体”和“有用”而给一个高分。通过深入探讨其理论基础、技术实现、案例推演及潜在挑战,本文旨在证明HUA-YU不仅为价值对齐问题提供了系统性的解决方案,更为AGI的未来发展,探寻了一条从“强大的工具”迈向“有益的智慧良伴”的、工程上可行的道路。:它将观测到的、不完美的、充满偏见的人类即时偏好作为宇宙的“中心”,并试图通过复杂的数学模型(如同托勒密体系中的“本轮”和“均轮”)去亦步亦趋地拟合这个中心。
2025-06-25 03:28:10
749
原创 怎样才能算作好问题
伏尔泰的这句名言揭示了一个深刻的悖论:问题似乎是“无知”的标志,却又是“智慧”的度量衡。一个好问题如同一把钥匙,能开启封闭的系统,激发沉睡的思考,甚至颠覆既有的世界。它是一个复杂的、多层次的现象,既是特定“语言游戏”中的有效参与者,更是潜在的世界图景重塑者。文章将从推动对话的基础功能出发,深入探讨其作为揭示真理与重构现实的强大力量,最终提出一个关于“好问题”的整合性理论模型。在这个信息爆炸而智慧稀缺的时代,答案变得廉价,而一个深刻、精准、富有洞见的好问题,其价值前所未有地凸显。它不是游戏中的一步,而是。
2025-06-25 00:47:13
909
原创 如何系统性的训练自己提出一个好问题的能力
是“信息的空白处”?是“理解的盲区”?是“预设的裂缝”?还是“权力结构的缝隙”?我们或许可以暂时放下“训练方法论”,先从“问题”自身的。
2025-06-24 17:50:06
891
原创 企业空间智能 (ESI) 平台:数字孪生决策副驾
其最终目标是打造一个与物理世界实时同步、具备深度认知和自主学习能力的**“活的”数字孪生 (Sentient Digital Twin)**,成为组织在日益复杂环境中保持竞争优势的核心引擎。本蓝图并非一份静态的文档,而是一个指引我们构建未来企业级智能系统的“活的”框架。SVCL是后端智能体与前端渲染器之间的标准化通信协议,其设计哲学是**“意图导向的渲染” (Intent-driven Rendering)**,即后端描述“要做什么”,而非“数据长什么样”。简单的RAG是孤立的知识检索。
2025-06-24 11:58:54
905
原创 多智能体协同的力量:赋能AI安全报告系统的智能设计之道
如前文所述,无论是海量异构数据的处理、复杂风险的深度挖掘,还是多维度报告的精准生成,单一AI模型(即使是强大的LLM)在面对庞杂的工业场景时,也可能显得力不从心。从单一智能到多智能体协作,是AI技术演进的必然趋势,尤其在复杂、高风险的工业安全领域。通过构建一个高效、专业且协同的智能体团队,我们不仅能更精准地识别和预测危化品安全风险,更能以前所未有的速度和深度,为安全生产管理提供强大的智能化支持,最终实现“智慧应急”的宏伟目标。智能体之间的协作并非简单的指令传递,而是基于。
2025-06-24 00:04:54
970
原创 智能生成分析报告系统在危化安全生产监测预警评估中的应用
本项目的AI生成分析报告系统不仅提升了危化安全生产监管工作的科学性与效率,更关键的是在政策、执行、问责三个层级上实现了“数字化闭环”,将事故研判、数据分析、流程规范和责任链条紧密集成。未来,报告系统将逐步进化为核心安全管理平台的“数字脑”,为政府企业和社会提供精准、可视、高效的公共安全保障能力。参考文献:《“工业互联网+安全生产”行动计划(2021-2023年)》、《危险化学品重大危险源安全包保责任制办法》、《生成式人工智能服务管理暂行办法》
2025-06-23 23:58:40
740
原创 八大架构宪法 - 技术使用指导说明文档
本文件定义了八套标准的、可供选择的《架构宪法》。当你被指令初始化一个新项目时,你必须要求人类专家从以下八种宪法中选择一种作为项目的基础。你的所有后续规约生成和代码实现,都必须严格遵循所选宪法定义的。这份完整的技术使用指导说明,为每一部架构宪法都提供了从哲学到实践的详细路线图。它将确保您的AI开发代理在接到“创世任务”时,能够基于所选的宪法,做出正确、专业、且富有远见的技术决策。在项目启动前,请根据以下维度对项目需求进行评估,以选择最合适的架构宪法。我们定义了八部宏伟的“架构宪法”,这份。
2025-06-21 13:22:43
142
原创 从“隐性知识”到“规约价值”的系统化方法论
你用自然语言告诉它“做一个用户登录功能”,它可能会生成一个功能正确的代码,但这个代码的架构、安全性、错误处理方式,几乎100%不符合你脑中那个资深架构师的“理想模型”。在未来的人机协同范式中,人类专家的终极价值,既不是管理者,也不是监督者,而是**“创世规约的守护者” (The Guardian of the Genesis Specification)**。对AI的信任,不能建立在“相信它很聪明”之上,而必须建立在一个**“无法被欺骗”**的自动化验证体系之上。我们的新角色,是**“生态设计师”**。
2025-06-21 08:34:55
179
原创 ollama优化小贴士
Ollama 通过引入多模态模型和模块化设计,显著增强了其在多模态任务中的能力。同时,它通过 API 接口、插件系统、本地工具链和云平台的集成方式,实现了与现有工具链的灵活融合。尽管仍面临一些挑战,但 Ollama 的扩展能力和集成方式为其在多模态任务中的广泛应用奠定了坚实基础。
2025-06-19 22:47:45
208
利用Graph-PReFLexOR进行现场图形推理与知识拓展的应用研究
2025-03-12
大型语言模型对齐技术综述与未来研究方向
2025-03-12
电力行业应对自然灾害的非结构化数据归集技术标准及实施指南
2025-01-14
自然灾害应急管理中的技术与多维复盘分析
2025-01-14
基于人工智能的个性化教学与汉语学习平台:整合多方资源,实现教师学生需求平滑连接
2025-01-14
教育领域AI技术在高校虚拟教学助理项目的应用与效益分析:涵盖个性化教学、智能反馈及跨学科拓展
2025-01-14
文物管理领域的AI辅助系统-智能化文物分类、鉴定与保护技术实现
2025-01-14
R语言量化投资数据分析应用
2020-05-13
室内分布系统工程勘察设计采购项目投标书-商务分册
2020-05-13
网络爬虫-Python和数据分析
2015-03-23
城市智慧服务项目-工作说明书
2020-05-13
保险资产私有云平台实施方案
2020-05-13
保险资产管理私有云平台搭建项目投标文件_技术部分
2020-05-13
2015-12航空总医院科教信息化系统建设项目汇报(1).ppt
2020-05-13
NOCC工程系统集成2标招标文件-技术部分
2020-05-13
智慧服务项目实施计划
2020-05-13
2020年新基建产业人才发展报告【20页】.pdf
2021-01-27
“新基建”系列研究报告【43页】.pdf
2021-01-27
中英开放数据报告.pdf
2021-01-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人