自适应阈值二值化

二值化原理:

把一个灰度图像二值化,其实就是找到一个阈值,使这个较低中,灰度大于这个阈值的,设置成255,灰度小于这个阈值的,设置为0。

阈值自适应二值化:

非自适应的二值化呢,有一个问题,就是一个阈值往往只对应一类图像,如果图像的光照变暗了,那个单阈值情况的二值化效果会大大的折扣。自适应二值化其实就是一种根据图片的灰度直方图,得到一个适合本图像的二值化阈值。


本文给出一种自适应阈值产生的方法,当然这个方法有很多种,本文只是一种方法。

本程序的原理很简单:如下图所示,蓝色的代表一个灰度图片的直方图,想办法找到一个合适的混合高斯分布去逼近它。混合高斯分布,其实就是两个高斯分布之和。我们认为两个高斯分布相交的地方的灰度值,就是要选择的阈值。


那么怎么去寻找一个逼近它的高斯分布呢?我用的是一个比较笨的方法,取一个变量t,将这个变量t,从左到右遍历每一个灰度。每次以t左边的数据当成一组样本来估计一个高斯分布,以t右边的数据为另一个样本来估计第二个高斯分布。将这两个高斯分布组合成的混合高斯分布,跟原始的数据匹配。至于匹配标准可以随意选择,可以用最小均方误差,也可以用最小绝对值误差,也可以用相关程度。随着t的遍历,找到每一次混合高斯分布与原始数据的匹配程度,选择最为匹配的混合高斯分布所对应的t值值为阈值。

实践证明,这种方法的自适应性还是很好的,鲁棒性比较好。


当改变直方图时,混合高斯模型的匹配效果,还是很多不错的。

但是有一点,就是要求处理的图片,灰度不能太复杂,尽量符合混合高斯模型。


<think>好的,我现在需要帮助用户找到在MATLAB中实现自适应阈值二值化的方法和示例。首先,用户的问题明确提到要自适应阈值,所以我要回忆一下MATLAB中相关的函数和方法。 根据用户提供的引用,特别是引用[2]和[3],Sauvola算法和Otsu方法都是常用的阈值选择方法。不过,Otsu是全局阈值,而自适应阈值通常是局部的,比如Sauvola或者使用OpenCV的adaptiveThreshold函数。用户可能想要的是类似OpenCV中的自适应方法在MATLAB中的实现。 在MATLAB中,imbinarize函数默认使用Otsu方法,但自适应的话可能需要自己实现。比如,引用[2]提到了Sauvola算法在MATLAB中的实现,用户可能需要这样的示例。同时,引用[4]提到OpenCV的adaptiveThreshold,但用户希望用MATLAB实现。 我需要检查是否有内置函数。查资料发现,MATLAB的imbinarize函数在2016b版本后支持自适应阈值,但可能需要指定方法,比如'adaptive'选项。或者,用户需要手动实现类似Sauvola的方法。 接下来,我应该分步骤说明不同的方法。首先介绍imbinarize的adaptive用法,然后给出手动实现Sauvola的示例,因为引用[2]提供了相关思路。同时,确保代码正确,比如使用图像处理工具箱的函数,比如stdfilt和mean2。 需要注意用户可能对局部窗口大小和参数调整有疑问,所以在示例中要说明参数的作用。另外,引用[3]中的Otsu是全局的,可能不符合用户需求,但可以作为对比提到。 最后,生成相关问题,帮助用户进一步学习,比如不同方法的比较、参数影响、性能优化等。</think>### MATLAB自适应阈值二值化实现方法 #### 一、内置函数实现(基于局部统计) MATLAB的`imbinarize`函数支持自适应阈值二值化,需指定`adaptive`模式: ```matlab % 读取图像并转为灰度 img = imread('example.jpg'); gray_img = rgb2gray(img); % 自适应阈值二值化 binary_img = imbinarize(gray_img, 'adaptive', ... 'Sensitivity', 0.5, ... % 敏感度参数(0-1) 'ForegroundPolarity', 'dark'); % 前景颜色方向 imshowpair(gray_img, binary_img, 'montage') ``` 参数说明: - `Sensitivity`:值越大阈值越低,保留更多前景 - `ForegroundPolarity`:指定前景是`dark`或`bright`[^3] #### 二、手动实现Sauvola算法 引用[2]提到的Sauvola算法MATLAB实现: ```matlab function binary_img = sauvola_threshold(img, window_size, k) gray_img = im2double(img); mean_img = @(block) mean2(block.data); std_img = @(block) std2(block.data); local_mean = blockproc(gray_img, [window_size window_size], mean_img); local_std = blockproc(gray_img, [window_size window_size], std_img); R = max(local_std(:)); % 动态范围 threshold = local_mean .* (1 + k * (local_std/R - 1)); binary_img = gray_img > threshold; end % 调用示例 img = imread('document.jpg'); result = sauvola_threshold(img, 15, 0.34); % 窗口尺寸15x15,k=0.34 imshow(result) ``` 算法特点: - 动态调整阈值,适合光照不均的文档图像 - 窗口尺寸影响细节保留程度[^2] #### 三、基于局部均值的简易实现 使用图像处理工具箱函数快速实现: ```matlab gray_img = imread('texture.png'); h = fspecial('average', 25); % 25x25均值滤波器 local_avg = imfilter(gray_img, h); binary_img = gray_img > 0.9*local_avg; % 系数控制阈值偏移 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大指挥官

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值