概述
1、在并发编程中,为了控制数据的正确性,我们往往需要使用锁来来保证代码块的执行隔离性。但是在很多时候锁的开销太大了,而在某些情况下,我们的局部变量是线程私有的,每个线程都会有自己的独自的变/量,这个时候我们可以不对这部分数据进行加锁操作。于是ThredLocal应运而生。
2、ThredLocal顾名思义,是线程持有的本地变量,存放在ThredLocal中的变量不会同步到其他线程以及主线程,所有线程对于其他的线程变量都是不可见的。那么我们来看下它是如何实现的吧。
3、注意:光理论是不够的。在此免费赠送5大JAVA架构项目实战教程及大厂面试题库,有兴趣的可以进裙 783802103获取,没基础勿进哦!
实现原理
ThredLocal在内部实现了一个静态类ThreadLocalMap来对于变量进行存储,并且在Thread类的内部使用到了这两个成员变量
ThreadLocal.ThreadLocalMap threadLocals = null;
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
来调用ThreadLocalMap存储当前线程的内部变量。
ThreadLocalMap的实现
ThreadLocalMap是键值对结构的map,但是他没有直接使用HashMap,而是自己实现了一个。
Entry
Entry是ThreadLocalMap中定义的map节点,他以ThreadLocal弱引用为key,以Object为value的K-V形式的节点。使用弱引用是为了可以及时释放内存避免内存泄漏。
static class Entry extends WeakReference<ThreadLocal<?>> {
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
这里和HashMap不一样的地方在于两者解决hash冲突的方式的不同,HashMap采用的是链地址法,遇到冲突的时候将冲突的数据放入同一链表之中,等到链表到了一定程度再将链表转化为红黑树。而ThreadLocalMap实现采用的是开放寻址法,它内部没有使用链表结构,因此Entry内部没有next或者是prev指针。ThreadLocalMap的开放寻址法是怎么实现的,请看接下来的源码。
成员变量
// map默认的初始化大小
private static final int INITIAL_CAPACITY = 16;
// 存储map节点数据的数组
private Entry[] table;
// map大小
private int size = 0;
// 临界值,达到这个值的时候需要扩容
private int threshold;
// 当临界值达到2/3的时候扩容
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
这里的数组大小始终是2的幂次,原因和HashMap一样,是为了在计算hash偏移的时候减少碰撞。
构造函数
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
// 初始化table
table = new Entry[INITIAL_CAPACITY];
// 计算第一个值的hash值
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
// 创建新的节点
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
set方法
private void set(ThreadLocal<?> key, Object value) {
// 获取ThreadLocal的hash值偏移量
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
// 遍历数组直到节点为空
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
// 如果节点key相等,即找到了我们想要的节点,
// 将值赋予节点
if (k == key) {
e.value = value;
return;
}
// 如果节点的key为空,说明弱引用已经把key回收了,那么需要做一波清理
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
// 如果没有找到对应的节点说明该key不存在,创建新节点
tab[i] = new Entry(key, value);
int sz = ++size;
// 进行清理,如果清理结果没能清理掉任何的旧节点,
// 并且数组大小超出了临界值,就进行rehash操作扩容
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
看到这段代码,开放寻址法的实现原理可以说是非常清楚了。首先计算节点的hash值,找到对应的位置,查看该位置是否为空,如果是空则插入,如果不为空,则顺延至下个节点,直到找到空的位置插入。那么我们的查询逻辑也呼之欲出:计算节点的hash值,找到对应的位置,查看该节点是否是我们想要找的节点,如果不是,则继续往下顺序寻找。
get方法
private Entry getEntry(ThreadLocal<?> key) {
// 计算hash值
int i = key.threadLocalHashCode & (table.length - 1);
// 获取该hash值对应的数组节点
Entry e = table[i];
if (e != null && e.get() == key)
// 如果节点不为空并且key一致,说明是我们找的节点,直接返回
return e;
else
// 否则继续往后寻找
return getEntryAfterMiss(key, i, e);
}
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
// 如果节点不为空就一直找下去
while (e != null) {
ThreadLocal<?> k = e.get();
// key相同则说明找到,返回该节点
if (k == key)
return e;
// key为空进行一次清理
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
replaceStaleEntry
// 这个方法的作用是在set操作的时候进行清理
private void replaceStaleEntry(ThreadLocal<?> key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
// slotToExpunge是之后开始清理的节点位置
int slotToExpunge = staleSlot;
// 往前寻找找到第一个为空的节点记录下位置
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
// 从staleSlot开始向后遍历直到节点为空
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
if (k == key) {
// 如果节点的key一致,替换value的值
e.value = value;
// 将当前节点和staleSlot上的节点互换位置(将后方的值放到前方来,之前的值等待回收)
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// 如果slotToExpunge和staleSlot相等,说明前面没有需要清理的节点
// 则从当前节点开始进行清理
if (slotToExpunge == staleSlot)
slotToExpunge = i;
// 进行节点清理
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
}
// 如果key为空并且slotToExpunge和staleSlot相等
// 把slotToExpunge赋值为当前节点
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
// 如果没法找到key相等的节点,
// 则清空当前节点的value并生成新的节点
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);
// 如果slotToExpunge和staleSlot不相等则需要进行清理(因为前方发现空的节点)
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}
expungeStaleEntry
// 对节点进行清理
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// 释放当节点
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
Entry e;
int i;
// 循环寻找到第一个空节点
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// key为空进行节点释放
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
// 如果key不为空,找到对应的节点应该在的位置
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
// 如果和当前节点位置不同,
// 则清理节点并且循环找到后面的非空节点移到前面来
tab[i] = null;
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}