数据生命周期管理:挑战与解决方案
1. 外部数据的挑战
当依赖外部数据驱动应用程序时,我们实际上依赖于这些数据的质量和稳定性。由于无法控制外部数据源,风险可能更高。在构建可靠应用程序且数据量增长时,需要思考如何降低这些风险。
2. 数据验证
数据验证是确保传入数据符合预期,并可能进行规范化处理、修改或删除格式错误或损坏的输入。具体操作因应用而异:
- 某些情况下,确保系统仅摄取符合准确或干净定义的数据。例如对于推文数据,可丢弃特定字段无值的记录。
- 有些应用必须捕获每个输入记录,可能需要实现逻辑来重新格式化每条记录以符合要求。
- 还有些情况,仅摄取正确记录,其余记录可存储在其他地方供后续分析。
验证逻辑可融入其他操作,也可在工作流中添加验证节点,或创建新的验证子工作流。但添加验证节点会增加额外处理和读写数据的周期,需在性能、工作流复杂性和可维护性之间权衡。
3. 处理格式变化
即使数据流入系统且已充分验证,也不能掉以轻心。特别是外部数据,其结构可能随时间变化。Hive 等系统在读取数据时才应用表模式,虽利于灵活存储和摄取,但当摄取的数据与查询不匹配时,可能导致查询或工作负载突然失败。而关系型数据库在写入时应用模式,不会允许此类数据进入系统。处理数据格式变化的常见方法是将现有数据重新处理为新格式,但在大型 Hadoop 集群中,这种方法很快变得不可行。
4. 使用 Avro 处理模式演变
Avro 与 Hive 集成的一些特性有助于处理模式演变问题。以推文数据为例,可使用以下 Avro 模式表示推文记录的结构: