异步汪仔
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
23、Meta-RegGNN:利用图神经网络和元学习预测言语和全量表智力分数
本博文介绍了Meta-RegGNN,一种结合图神经网络(GNN)和元学习的新型回归模型,用于预测言语智商(VIQ)和全量表智商(FIQ)等认知分数。该方法充分利用功能脑连接组的局部和全局拓扑特性,并通过元学习减少个体大脑高异质性对预测结果的影响,从而在神经典型(NT)和自闭症谱系障碍(ASD)人群中展现出优越的预测性能。研究展示了Meta-RegGNN在神经科学和医学领域的广泛应用前景。原创 2025-07-23 02:23:19 · 15 阅读 · 0 评论 -
22、从单图模板预测大脑多重图群体以提升一次性分类性能
本文提出了一种创新的混合图神经网络架构MultigraphGNet,用于从单个图模板预测大脑多重图群体,以提升一次性分类性能。该方法通过深度图归一化器(DGN)和反向DGN(RDGN)网络,实现了从单个连接性大脑模板(CBT)生成多连接大脑多重图,并通过数据增强策略显著提升了分类器在自闭症和正常对照分类任务中的性能。研究还指出了当前方法在拓扑属性考虑方面的局限性,并提出了引入拓扑损失的改进方向。原创 2025-07-22 14:51:43 · 14 阅读 · 0 评论 -
21、无标注医学图像的全局和局部表示的三元组对比学习
本文提出了一种基于三元组对比学习的自监督学习方法,用于医学图像的全局和局部特征表示。通过构建全局变化和局部变化的视图,并利用三元组损失函数优化特征学习,该方法在少量数据下即可达到甚至超越现有先进模型的性能。实验表明,该方法在CheXpert数据集的胸部X光图像分类任务中取得了优异的平均AUC,为医学图像分析提供了一种有效的解决方案。原创 2025-07-21 09:17:18 · 13 阅读 · 0 评论 -
20、从皮质表面测量中学习特定受试者的功能分区
本研究提出了一种从结构MRI的皮质表面特征推断个体特定功能分区的新方法。通过深度学习模型,仅使用T1w和T2w图像衍生的解剖特征,即可预测基于rs-fMRI的功能分区标签,并在测试数据中展现出与真实标签中等程度的一致性。与群体水平的分区相比,该方法能够更好地捕捉个体差异,具有在临床应用(如术前规划和脑刺激疗法)和研究(如认知行为与大脑功能关系探索)中的潜力。未来研究将进一步扩展数据集和应用范围,以提高模型的通用性和实用性。原创 2025-07-20 14:51:55 · 13 阅读 · 0 评论 -
19、探究联邦图神经网络的预测可重复性
本文研究了在医疗数据分散化背景下,如何通过联邦学习提升图神经网络(GNN)模型预测的可重复性。提出了一种联邦可重复性量化框架,结合多个本地医院的数据训练 GNN 模型,并通过识别最具可重复性的生物标志物来提高模型的稳定性和解释性。框架包括数据划分、联邦学习、特征提取、可重复性矩阵构建及最具可重复性模型与特征选择。实验基于多个医学成像和连接组数据集,结果表明联邦学习不仅能提升模型准确性,还能增强其可重复性。此外,研究识别出与自闭症相关的高可重复性脑区生物标志物,为神经系统疾病的诊断提供了潜在的可靠依据。原创 2025-07-19 10:07:58 · 7 阅读 · 0 评论 -
18、回归GNN模型预测不确定性量化与联邦图神经网络预测可重复性研究
本博文围绕回归图神经网络(GNN)模型的预测不确定性量化与联邦图神经网络的预测可重复性展开研究。在回归GNN模型中,通过集成模型和新型误差度量(e_U)对预测不确定性进行量化,并在域转移和交叉验证条件下进行评估。实验使用ABIDE数据集,分析了不同集成策略对模型性能的影响,结果表明包含更多多样性基学习器的集成模型表现更优。同时,联邦图神经网络的研究聚焦于模型在分布式数据下的可重复性,采用联邦平均算法提升模型的准确性和特征稳定性,为医疗隐私保护下的模型训练提供了有效方案。研究为医学领域的诊断和治疗提供了可靠的原创 2025-07-18 10:09:37 · 10 阅读 · 0 评论 -
17、多任务学习与图神经网络在认知结果预测中的应用
本博文探讨了多任务学习和图神经网络在认知结果预测中的应用。多任务学习结合脑MRI成像和临床非成像数据,用于预测长期卒中后认知障碍(PSCI),并评估不同模型在分类和分割任务中的性能。同时,图神经网络被应用于预测认知分数(如智商IQ),提出了一种深度图集成方法以解决域转移情况下的不确定性估计问题。博文还对两种方法的优势、挑战及综合应用进行了分析,并展望了未来研究方向,如多模态数据融合、参数共享策略优化和不确定性估计的改进等。原创 2025-07-17 16:26:47 · 8 阅读 · 0 评论 -
16、深度学习在膝关节骨关节炎与中风患者认知预后预测中的应用
本文探讨了深度学习在膝关节骨关节炎和中风患者长期认知预后预测中的应用。针对膝关节OA,提出了一种结合形状和纹理特征的新型CNN方法,在预测性能上优于传统预训练网络;对于中风患者的认知预后预测,研究利用多任务学习结合脑部成像和临床非成像数据,显著提升了预测准确性。研究结果展示了深度学习在医疗预测领域的巨大潜力,并为未来的研究方向提供了建议。原创 2025-07-16 13:04:25 · 10 阅读 · 0 评论 -
15、医学图像分析中的深度学习方法:TILs 分割与早期膝骨关节炎预测
本文介绍了两种基于深度学习的医学图像分析方法:一种是用于肿瘤浸润淋巴细胞(TILs)分割的弱监督模型,通过点检测和边界回归结合迁移学习策略,实现了精确的TILs划分;另一种是用于早期膝骨关节炎(OA)预测的深度卷积神经网络,结合纹理和形状信息并引入判别损失函数,提高了OA和非OA病例的区分能力。实验结果表明,这两种方法在各自任务中均表现出优越性能,为医学图像分析提供了有效支持。原创 2025-07-15 11:36:39 · 7 阅读 · 0 评论 -
14、基于点标注和迁移学习的弱监督肿瘤浸润淋巴细胞(TILs)分割方法
本文提出了一种基于点标注和迁移学习的弱监督肿瘤浸润淋巴细胞(TILs)分割方法。该方法通过解耦分割任务为点检测和边界回归,利用常见细胞核的先验知识实现迁移学习,显著减少了人工标注的工作量,同时在TILs分割任务中取得了优于现有方法的性能。实验结果表明,该方法在内部构建的黑色素瘤数据集上表现优异,为癌症诊断和免疫反应预后提供了有力支持。此外,该方法具有良好的扩展性,可应用于其他细胞核分割任务,并为未来的研究指明了方向。原创 2025-07-14 13:45:43 · 10 阅读 · 0 评论 -
13、机会性髋部骨折风险预测
本博文介绍了一种名为FORM的机会性髋部骨折风险预测方法,通过数据预处理、特征提取、风险估计和评估四个主要步骤,对患者的X射线和CT图像进行分析。研究结果表明,FORM在预测性能上优于传统的Cox比例风险模型和FRAX方法,尤其是在结合图像特征和多种风险因素的情况下。此外,FORM在非骨密度测量设置和骨密度测量设置中均表现出较高的预测准确率,为未来骨质疏松性髋部骨折的筛查提供了一种有前景的解决方案。原创 2025-07-13 16:31:00 · 8 阅读 · 0 评论 -
12、医学图像分割与骨折风险预测的创新方法
本文介绍了两种医学图像分析领域的创新方法。第一部分提出了一种基于无卷积Transformer的DeepLab v3+模型——TransDeepLab,在皮肤病变分割任务中表现出色,具有较低的模型复杂度和优越的分割性能。通过消融实验验证了各模块的有效性,展示了其在不同医学图像数据集上的泛化能力。第二部分则提出了一种用于预测男性髋部骨折风险的自动图像处理管道FORM,该方法基于深度学习,结合X射线或CT图像以及病例史等信息,实现了对10年髋部骨折风险的准确预测,适用于机会性筛查场景,无需依赖特殊设备。两种方法均原创 2025-07-12 09:31:14 · 9 阅读 · 0 评论 -
11、TransDeepLab:用于医学图像分割的无卷积Transformer深度网络
本文提出了一种用于医学图像分割的无卷积Transformer深度网络TransDeepLab。该方法将Swin-Transformer的优势与DeepLab架构相结合,通过Swin空间金字塔池化和交叉上下文注意力模块,有效捕获长距离依赖和多尺度特征。实验表明,TransDeepLab在Synapse多器官分割和皮肤病变分割任务上均表现出色,优于现有方法,特别是在分割准确性和细粒度细节捕获方面具有显著优势。原创 2025-07-11 13:04:12 · 13 阅读 · 0 评论 -
10、MISS-Net:基于多视图嵌入学习的MCI向AD转化预测框架
本文介绍了一种基于多视图嵌入学习和监督对比学习的新型预测框架MISS-Net,用于准确预测轻度认知障碍(MCI)向阿尔茨海默病(AD)的转化。该框架利用FDG-PET影像数据,结合空间视觉变换器、视图投影和全连接层设计,以及两阶段训练方法,在小数据情况下表现出色,优于现有的SOTA方法。实验结果表明,MISS-Net在预测MCI向AD转化任务中具有优异的性能和广阔的应用前景,包括早期诊断、个性化医疗和医学研究等领域。原创 2025-07-10 13:23:09 · 10 阅读 · 0 评论 -
9、医学影像智能诊断:从膝盖损伤到阿尔茨海默病前期预测
本文探讨了基于人工智能的医学影像智能诊断技术,重点介绍了两种疾病检测方法:一种是基于MRI影像的膝盖损伤诊断方法,结合ResNet和Transformer网络以提高诊断准确性;另一种是基于18F-FDG PET影像的轻度认知障碍(MCI)阶段预测方法,利用多视图对比Transformer网络(MISS-Net)进行MCI亚型识别。两种方法均展现了Transformer架构在医学影像分析中的强大潜力,为阿尔茨海默病的早期预测和膝盖损伤的智能辅助诊断提供了新思路。未来,这些方法有望拓展到更多疾病的诊断,并结合多原创 2025-07-09 10:47:55 · 8 阅读 · 0 评论 -
8、Mixup增强与Transformer助力医学影像诊断
本文探讨了两种深度学习方法在医学影像诊断中的应用:Mixup增强技术用于T1w脑MRI的年龄预测,以及结合卷积神经网络(CNN)和Transformer的模型用于膝关节MRI损伤诊断。研究结果显示,Mixup增强通过优化混合策略和分布,显著提高了年龄预测的准确性,而Transformer在融合多视图信息方面表现出色,提升了膝关节损伤诊断的性能。这些方法为医学影像诊断提供了高效、准确的技术方案。原创 2025-07-08 10:47:10 · 7 阅读 · 0 评论 -
7、医学影像处理:椎间盘标记与脑年龄预测的创新方法
本文介绍了两种医学影像处理领域的创新方法:一种结合形状信息的椎间盘标记方法,显著提高了标记的准确性和效率;另一种采用Mixup增强策略的脑年龄预测方法,有效提升了预测的准确性并减少了计算开销。两种方法均在各自任务中展现出显著优势,并为医学诊断和个性化治疗提供了强有力的支持。原创 2025-07-07 13:57:17 · 9 阅读 · 0 评论 -
6、医学影像处理中的创新模型:MINiT与椎间盘标注方法
本文介绍了两种医学影像处理领域的创新模型:MINiT和基于学习形状信息的椎间盘标注方法。MINiT是一种无卷积变压器模型,能够通过端到端训练对3D T1w MRI进行分类,具有良好的泛化能力和对性别差异的敏感性。椎间盘标注方法通过融入形状信息、形状注意力模块以及置换不变的后处理策略,显著降低了误报率,提高了椎间盘定位的准确性和效率。这些方法在医学诊断中具有广泛应用前景,并为未来的研究和技术发展提供了重要方向。原创 2025-07-06 15:43:10 · 11 阅读 · 0 评论 -
5、基于深度学习的多示踪剂PET成像与多实例神经影像变压器
本文提出了一种用于三维T1加权MRI分类的多实例神经影像Transformer(MINiT)架构。通过将自注意力机制引入医学图像分析,结合多实例学习(MIL)框架,MINiT在青少年大脑图像性别识别任务中表现出色,具有较高的分类准确率和对类别不平衡的鲁棒性。研究还探讨了因子化编码器、旋转嵌入等技术对模型性能的影响,并通过注意力图可视化展示了模型对性别差异特征的有效捕捉。原创 2025-07-05 12:55:57 · 10 阅读 · 0 评论 -
4、基于深度学习的多示踪剂PET成像:高级别胶质瘤患者的应用
本研究探索了基于深度学习的多示踪剂PET成像在高级别胶质瘤患者中的应用。通过开发一种结合条件生成对抗网络(cGAN)和特征提取网络的机器学习框架,利用¹⁸F-FDOPA PET图像和T1加权对比增强MRI(ceMRI)生成合成的¹⁸F-FLT PET图像,从而避免为同一名患者注射多种示踪剂。研究结果显示,合成图像在定量评估和核医学医师评分中均表现优异,展示了该方法在降低患者辐射剂量、减少成像扫描次数以及提升个性化医疗水平方面的潜力。原创 2025-07-04 16:58:44 · 9 阅读 · 0 评论 -
3、基于深度学习和置换检验的青少年抑郁症状预测分析
本研究结合深度学习与置换检验方法,对青少年抑郁症状中的负性情绪进行预测分析。基于NCANDA数据集,研究使用横截面和纵向两种模型,识别出人格特质和生活事件等关键预测因素,并通过置换测试验证其显著性。研究不仅为青少年抑郁的早期干预提供了数据支持,也为深度学习与统计假设检验的结合提供了新思路。原创 2025-07-03 13:53:53 · 8 阅读 · 0 评论 -
2、深度学习与神经科学研究的创新融合:从脑连接数据到风险因素识别
本文探讨了深度学习与神经科学研究的两项创新成果:一是基于脑连接数据的联邦时间依赖图神经网络(4D - FED - GNN+)学习方法,二是融合深度学习与假设驱动分析的排列测试方法。4D - FED - GNN+通过混合联邦策略有效处理缺失时间点的脑图数据,提升了预测性能;排列测试方法则成功识别了与负性情绪相关的风险因素类别。文章进一步分析了两种方法的优势与局限性,并展望了未来在算法融合和跨学科合作方面的研究方向,为神经疾病预测和诊断提供了新的工具和思路。原创 2025-07-02 13:01:46 · 8 阅读 · 0 评论 -
1、医学预测智能:进展、挑战与创新方法
本文探讨了医学预测智能(PRIME)的重要性、现状及创新方法,重点介绍了基于联邦学习与图神经网络的4D-FED-GNN+模型,用于预测脑连接数据的演变轨迹。文章分析了当前医学预测领域面临的挑战,如数据缺失、模型适应性及隐私保护,并提出了未来发展方向,包括数据整合、模型优化和跨学科合作。4D-FED-GNN+ 模型通过混合联邦策略,有效解决了非独立同分布数据的建模难题,为神经疾病早期诊断提供了新思路。原创 2025-07-01 11:09:15 · 9 阅读 · 0 评论