统计labelme各类别标注的数量

统计labelme标注中各个类别的数量,生成柱状图和txt文件

import os
import json
import glob
from collections import Counter
import matplotlib.pyplot as plt

# === 输入目录(包含json标注文件) ===
input_dir = r"D:\plant_seg_datasets\20250524\image"  # 包含 LabelMe 的 JSON 文件
output_dir = os.path.dirname(input_dir)  # 输出目录(20250524)

# === 输出路径 ===
output_plot_path = os.path.join(output_dir, "label_stats.png")
output_txt_path = os.path.join(output_dir, "label_stats.txt")

# === 统计每个类别在标注中的出现次数 ===
label_counter = Counter()

for json_path in glob.glob(os.path.join(input_dir, "*.json")):
    with open(json_path, "r", encoding="utf-8") as f:
        data = json.load(f)
        for shape in data.get("shapes", []):
            label = shape.get("label")
            if label:
                label_counter[label] += 1

# === 按数量从高到低排序 ===
label_counter = dict(sorted(label_counter.items(), key=lambda x: x[1], reverse=True))

# === 保存统计文本文件 ===
with open(output_txt_path, "w", encoding="utf-8") as f:
    for label, count in label_counter.items():
        f.write(f"{label}: {count}\n")

# === 绘制条形图 ===
plt.figure(figsize=(12, 6))
plt.bar(label_counter.keys(), label_counter.values(), color='skyblue')
plt.xlabel("Class Name")
plt.ylabel("Count")
plt.title("Label Count per Class in LabelMe Annotations")
plt.xticks(rotation=90)
plt.tight_layout()
plt.grid(axis='y', linestyle='--', alpha=0.7)

# === 保存图像 ===
plt.savefig(output_plot_path, dpi=300)

print(f"✅ 类别统计图已保存至: {output_plot_path}")
print(f"✅ 类别统计表已保存至: {output_txt_path}")

<think>好的,用户问的是如何在LabelMe中添加空标签或者创建无类别的标签。首先,我需要回忆一下LabelMe的基本功能。LabelMe是一个用于图像标注的工具,常用于目标检测和图像分割任务。用户提到的“空标签”可能是指没有具体类别信息的标注,或者希望某些标注不被分配类别。 根据引用资料,特别是引用[1]提到在json_to_dataset.py文件中修改代码,处理标签名称和值的映射。通常,LabelMe标注文件(JSON)中的每个形状(shape)都有一个label属性。如果用户想创建无类别的标签,可能需要让label字段为空或者设置一个默认值。不过,默认情况下LabelMe可能不允许label为空,所以可能需要修改代码。 另外,引用[5]中提到了定义标签映射,比如将"car"映射为0,"bus"映射为1。如果用户需要空标签,可能需要添加一个特殊的键,比如"unlabeled"或者留空字符串,并为其分配一个特定的数值,比如0或其他。但要注意,通常背景类会被设为0,如引用[1]中的_background_。 可能的解决方法是,在标注时直接不填写标签名称,或者在代码中处理空标签的情况。查看引用[1]中的代码,原本的处理是按标签名分配数值,如果标签名为空,可能需要跳过或者分配一个默认值。不过原代码注释掉的部分原本是按标签名排序并分配值,如果允许空标签,可能需要调整这部分逻辑,使得空标签不被包括进去,或者单独处理。 用户可能需要修改labelme的源码,使得当标签名为空时,仍然可以生成对应的标注数据,但类别值不被计入。例如,在生成VOC格式或YOLO格式时,忽略空标签或者将其视为背景。不过这可能影响训练,因为网络需要明确的类别信息。因此,用户可能需要明确他们使用空标签的目的,比如占位符或者未标注区域,这时候可能需要特殊处理。 另外,引用[4]中提到的一些操作,比如修改标注类别的名字、统计类别数量等,可能相关。如果用户想创建无类别标签,可能需要通过修改标签名称,或者在后处理脚本中过滤掉某些标签。例如,在生成数据集时,将空标签映射到特定的背景类。 总结可能的步骤:在标注时留空标签名称,或者在代码中处理空标签的情况,比如在生成数据集时忽略它们,或者分配默认值。需要指导用户如何修改源码或在标注时留空,并处理后续的数据转换步骤。</think>### 如何在LabelMe中添加空标签或无类别标签 LabelMe默认要求标注时指定标签类别,但可以通过以下方法实现“空标签”或创建无类别标签: --- #### **方法1:标注时留空标签名称** 1. **标注操作** 在LabelMe中绘制标注形状(如多边形、矩形等)时,**直接在标签输入框中不填写任何内容**,保持为空并保存。 - 生成的JSON文件中,该形状的`"label"`字段会显示为空字符串`""`。 - 注意:LabelMe可能默认禁止空标签,需确认版本是否支持[^1]。 2. **代码修改(关键步骤)** 若LabelMe强制要求填写标签名称,需修改源码以允许空标签: - 找到LabelMe安装目录下的`labelme/widgets/label_dialog.py`文件,注释或删除标签名称的必填验证逻辑[^1]。 - 示例修改位置: ```python # 原代码可能包含类似以下验证(需注释掉) # if not text: # QtWidgets.QMessageBox.warning(self, "Error", "Label name cannot be empty.") # return ``` --- #### **方法2:定义空标签映射** 在转换标注数据时(如生成YOLO或VOC格式),**将空标签映射到特定值**(例如背景类): 1. 在转换脚本中定义标签映射字典,为`""`分配一个固定值(如`0`)[^5]: ```python label_map = { "": 0, # 空标签映射为背景类 "car": 1, "bus": 2 } ``` 2. 处理数据时,空标签会统一归类为背景,避免网络学习干扰。 --- #### **注意事项** - **训练兼容性**:空标签通常被视为背景,需确保训练框架(如YOLOv8、Mask R-CNN)支持背景类定义。 - **标注一致性**:建议明确标注意图,空标签可能影响模型对有效类别的识别[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值