模拟IC设计——简单放大器的直流仿真

本文详细介绍了如何使用Cadence Virtuoso6.17进行直流仿真和直流特性扫描仿真。首先,通过设置电源电压和交流信号属性,进行简单放大器的直流仿真,确定电路的直流工作点。接着,利用直流特性扫描仿真分析了电路在-40至125℃温度范围内的输出电压变化,发现输出电压随温度上升近似线性增大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

仿真工具:Cadence virtuoso6.17
仿真工艺:simc18mmrf
仿真实例:简单放大器
三、直流仿真

直流分析是其他所有仿真的基础。在交流小信号仿真、瞬态仿真等分析过程中,首先要通过直流仿真来确定电路的直流工作点。

上一节: 简单放大器的瞬态仿真

从“simc18mmrf”库中调用NMOS n33,按键盘中的Q键,在属性lu/5u;重复上述操作,调用PMOS p33,并分配宽长比为1u/3u。调用一个理想电容cap,并设置电容值为1pF

(1)画原理图
电源电压“vdd”为3.3V,地“gnd”为0V。之后对“vsin”设置交流信号属性,在“DC voltage”栏中输入直流偏置电压1.65V,在“Amplitude”栏中输入幅度为1mV,在“Frequency”栏中输入相位为1M,表示正弦波的频率为1MHz。
在这里插入图片描述
(2)添加仿真类型
打开仿真面板,选择dc仿真。
在这里插入图片描述
(3)完成设置后,点击仿真按钮,开始仿真。
在这里插入图片描述
(4)仿真结束后,选择“Results”→“Print”-“DC Node Voltages”命令,用箭头在电路图中选择观测节点,即可打印出该点电压值。例如,选择输出节点,打印电压值如图所示。

在这里插入图片描述

(5)在工具栏中选择“Results”–“Print”→“DC Operating Points”命令,用箭头在电路图中选择观测器件,即可打印出该器件的直流工作点和参数,其中包括电容、电流、跨导等。例如,选择PMOS M2,打印表格如图所示,图中只显示了一部分晶体管的直流工作点和参数。

在这里插入图片描述
(6)选择“Results”→“Annotate”"DC Node Voltages”和“Results”-“Annotate”→“DC Operating Points”命令,如图所示,电路图中会显示此时的节点电压和器件直流工作点。
在这里插入图片描述
2.直流特性扫描仿真
一般电路的工作温度范围为-40~125℃,可以采用直流特性扫描仿真对该电路的温度特性进行扫描。
(1)如图所示,首先在“dc”设置对话框中选择“Save DC Operating Point”,然后选择“Temperature”选项,设置仿真起始温度“Start”为“—40”,结束温度“Stop”为“125”,表示扫描温度为一40~125℃。
在这里插入图片描述
(2)选择“Outputs”-“To Be Plotted”-“Select On Schematic”命令,在电路图上单击放大器的输出连线。选择“Stimulation”→“Netlist and Run”命令,开始仿真。仿真结束后,自动弹出输出电压随温度变化的仿真结果,如图所示。可见输出电压信号随着温度上升近似呈线性增大。电压摆动在220mV 左右。
在这里插入图片描述

### 使用Cadence进行误差放大器设计仿真 #### 设计准备 在使用Cadence设计误差放大器之前,需先了解误差放大器的工作原理及其基本结构。误差放大器通常用于反馈控制系统中,能够比较输入电压和输出电压之间的差异并调整控制信号以减小该差异。 #### 创建新项目 启动Cadence Virtuoso平台,在ADEXL界面下创建一个新的模拟IC设计项目。设置好项目的名称、路径以及工艺库文件[^2]。 #### 构建电路模型 进入Schematic Editor绘制误差放大器的拓扑图。一般情况下,误差放大器由运算放大器(OPAMP)为核心元件构成。根据具体需求选择合适的OPAMP型号,并连接必要的外围组件如电阻、电容等来完成补偿网络的设计。确保所有元器件参数合理配置,特别是增益带宽积(Gain-Bandwidth Product),相位裕度(Phase Margin)等关键指标应满足应用场合的要求。 #### 参数化定义 为了便于后续调优操作,建议采用Symbolic Parameter功能给定一些重要变量(比如Rf, Cc)。这样可以在不改变实际物理布局的前提下灵活修改这些数值从而快速迭代设计方案。 #### 运行初步直流扫描分析 利用DC Sweep Analysis工具观察开环增益随频率变化的趋势曲线。这一步骤有助于确认所选运放是否具备足够的线性范围支持预期工作条件下的正常运作;同时也可借此机会验证补偿策略的有效性——即保证整个系统的稳定性不受影响的同时实现理想的响应速度。 #### 蒙特卡罗(Monte Carlo)统计分析 考虑到制造过程中不可避免存在的偏差因素可能会影响最终产品的性能表现,因此有必要引入Monte Carlo方法来进行不确定性量化研究。设定各类型被动元件的最大允许公差限值(例如±10%),重复执行多次随机抽样试验获取大量样本数据集之后再做进一步处理得到概率分布特征描述图表形式的结果展示。这种方法能有效帮助工程师提前预知潜在风险点所在位置进而采取针对性措施加以规避[^1]。 ```python # Python伪代码示例:生成蒙特卡罗分析脚本片段 import numpy as np def monte_carlo_simulation(num_samples=1000): samples = [] for _ in range(num_samples): r_value = np.random.uniform(low=90, high=110) # 假设标准值为100Ω ±10% c_value = np.random.uniform(low=8.5, high=11.5) * (10 ** (-6)) # 单位F假设标准值为10μF ±10% sample_result = simulate_with_parameters(r=r_value, c=c_value) samples.append(sample_result) return analyze_results(samples) monte_carlo_simulation() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆已十六

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值