线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(下)

        在上一篇文章中,通过一个例子来说明最小二乘在拟合直线时所发挥的作用,也通过两个插图的比较进一步的阐明了投影与最小化e之间的密切关系。

线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(上)_松下J27的博客-CSDN博客本文接续上文,从最小二乘在直线拟合上的应用开始,一步步推导出什么是Gram-Schmidt正交化,以及为什么我们需要对矩阵A中的列向量进行正交化的处理https://blog.csdn.net/daduzimama/article/details/129995583        在这篇文章中,我们依然会从三组数据点的直线拟合开始,所不同的是,这次选择的三个观测时间点的值比较特殊,继而引出Gr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值