线性代数 --- Gram-Schmidt, 格拉姆-施密特正交化(上)

文章详细介绍了Gram-Schmidt正交化过程,以及如何通过这个过程将非正交的列向量转换为正交或单位正交向量,从而简化最小二乘问题的求解。通过线性无关向量的正交化,可以将矩阵转换为标准正交基,进而形成标准正交矩阵,这大大减少了计算复杂度,特别是避免了求逆运算,提高了计算效率和精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Gram-Schmidt正交化

        在前面的几个最小二乘的文章中,实际上已经看到Gram-Schmidt正交化的影子。在我个人看来,Gram-Schmidt正交化更像是专门为了简化最小二乘计算而量身定制的一种算法。下面,我会从最小二乘的经典应用 --- "拟合直线"开始,慢慢引出Gram-Schmidt的核心思想 ——> 那就是,究竟如何“改写”矩阵A中的列向量,才能在最大程度上简化最小二乘的求解过程呢?


Independent vectors(线性无关向量所组成的矩阵)

        很多关于最小二乘法的文章中都绕不开直线拟合问题,在讲Gram-Schmidt之前,让我们先从下面的例子开始:

        已知的三个数据点(当t1=1,b1=1),(当t2=3,b2=2)和(当t3=5,b3=4),现在用这三个点去拟合一条直线b=C+Dt。首先根据这三个已知的数据点,可得到如下线性方程组:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值