数字信号处理 --- 二维离散余弦变换(python实战)

二维离散余弦变换(python实战)

(注:文中所讨论的离散余弦变换都是DCT-II)

        在上一篇文章中,我详细介绍了一维离散余弦变换的基本原理,并且以可视化的方式展示了一维DCT中用于分析输入信号的一系列基础余弦波。 在这篇文章中继续关于DCT的学习,并把DCT从一维推广到二维,最后以图像的离散余弦变换为结尾。

数字图像处理 --- 一维离散余弦变换(python实战)-CSDN博客文章浏览阅读303次,点赞6次,收藏9次。本文详细介绍了基于python实现的一维离散余弦变换,是我个人的学习笔记。https://blog.csdn.net/daduzimama/article/details/140449135

二维DCT正变换

二维DCT正变换公式如下: 

X[\mu,\nu ]=E(\mu)E(\nu)\frac{2}{N}\displaystyle\sum_{m=0}^{N-1}\displaystyle\sum_{n=0}^{N-1}x[m,n]cos\frac{(2m+1)\mu\pi}{2N}cos\frac{(2n+1)\nu\pi}{2N}

X[\mu,\nu ]=E(\mu)\sqrt{\frac{2}{N}}\displaystyle\sum_{m=0}^{N-1}cos\frac{(2m+1)\mu\pi}{2N}(E(\nu)\sqrt{\frac{2}{N}}\displaystyle\sum_{n=0}^{N-1}x[m,n]cos\frac{(2n+1)\nu\pi}{2N})

        其中,x[m,n]为输入图像的像素值,m,n=0,1,...,N-1。X[\mu ,\nu]为经过离散余弦变换后的结果,即离散余弦变换的系数,\mu,\nu=0,1,...,N-1。E(\mu),E(\nu)为归一化系数,当\mu ,\nu=0时, E(\mu),E(\nu)=\frac{1}{\sqrt{2}}。 当 \mu,\nu=1,2,3,....,N-1时, E(\mu),E(\nu)=1

        单从公式来看,我们可以知道三点。第一,频域中的每一个点X[\mu ,\nu]都要遍历整幅图像计算。二,就某个固定的\mu,\nu而言,分析每行和每列数据用的是同一组cos函数。第三,越是往频域的右下角计算,分析图像所需的cos函数的频率就越高。

以4个点的X[0,0]的计算为例,N=4,\mu ,\nu=0:

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值