在获取点云数据时 ,由于设备精度,操作者经验环境因素带来的影响,以及电磁波的衍射特性,被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中讲不可避免的出现一些噪声。在点云处理流程中滤波处理作为预处理的第一步,对后续的影响比较大,只有在滤波预处理中将噪声点 ,离群点,孔洞,数据压缩等按照后续处理定制,才能够更好的进行配准,特征提取,曲面重建,可视化等后续应用处理,PCL中点云滤波模块提供了很多灵活实用的滤波处理算法,例如:双边滤波,高斯滤波,条件滤波,直通滤波,基于随机采样一致性滤波。双边滤波算法是通过取临近采样点和加权平均来修正当前采样点的位置,从而达到滤波效果,同时也会有选择剔除与当前采样点“差异”太大的相邻采样点,从而保持原特征的目的。
PCL中总结了几种需要进行点云滤波处理情况,这几种情况分别如下:
(1) 点云数据密度不规则需要平滑
(2) 因为遮挡等问题造成离群点需要去除
(3) 大量数据需要下采样
(4) 噪声数据需要去除
对应的方案如下:
(1)按照给定的规则限制过滤去除点
(2) 通过常用滤波算法修改点的部分属性
(3)对数据进行下采样
下面将分别举例:
(1)在PCL 中使用直通滤波器对点云进行滤波处理
#include "pch.h"
#include <iostream>
#include <pcl/point_types.h>
#include <pcl/filters/passthrough.h>
int
main(int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
//生成并填充点云
cloud->width = 50;
cloud->height = 1;
cloud->points.resize(cloud->width * cloud->height);
for (size_t i = 0; i < cloud->points.size(); ++i) //填充数据
{
cloud->points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);
cloud->points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);
cloud->points[i].z = 1024 * rand() / (RAND_MAX + 1.0f);
}
std::cerr << "Cloud before filtering: " << std::endl; //打印
for (size_t i = 0; i < cloud->points.size(); ++i)
std::cerr << " " << cloud->points[i].x << " "
<< cloud->points[i].y << " "
<< cloud->points[i].z << std::endl;
/************************************************************************************
创建直通滤波器的对象,设立参数,滤波字段名被设置为Z轴方向,可接受的范围为(0.0,1.0)
即将点云中所有点的Z轴坐标不在该范围内的点过滤掉或保留,这里是过滤掉,由函数setFilterLimitsNegative设定
***********************************************************************************/
// 设置滤波器对象
pcl::PassThrough<pcl::PointXYZ> pass;
pass.setInputCloud(cloud); //设置输入点云
pass.setFilterFieldName("z"); //设置过滤时所需要点云类型的Z字段
pass.setFilterLimits(0.0, 1000.0); //设置在过滤字段的范围
//pass.setFilterLimitsNegative (true); //设置保留范围内还是过滤掉范围内
pass.filter(*cloud_filtered); //执行滤波,保存过滤结果在cloud_filtered
std::cerr << "Cloud after filtering: " << std::endl; //打印
for (size_t i = 0; i < cloud_filtered->points.size(); ++i)
std::cerr << " " << cloud_filtered->points[i].x << " "
<< cloud_filtered->points[i].y << " "
<< cloud_filtered->points[i].z << std::endl;
return (0);
}
(2)使用VoxelGrid滤波器对点云进行下采样
使用体素化网格方法实现下采样,即减少点的数量 减少点云数据,并同时保存点云的形状特征,在提高配准,曲面重建,形状识别等算法速度中非常实用,PCL是实现的VoxelGrid类通过输入的点云数据创建一个三维体素栅格,容纳后每个体素内用体素中所有点的重心来近似显示体素中其他点,这样该体素内所有点都用一个重心点最终表示,对于所有体素处理后得到的过滤后的点云,这种方法比用体素中心逼近的方法更慢,但是对于采样点对应曲面的表示更为准确。
#include "pch.h"
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h&