IoU变体对比:WIOU、SIOU、EIOU、GIOU、CIOU
1. 基本概念与公式
(1) GIOU (Generalized Intersection over Union)
- 提出背景:解决传统IoU在无重叠区域时梯度消失的问题。
- 公式:
GIoU = IoU − ∣ C − ( A ∪ B ) ∣ ∣ C ∣ \text{GIoU} = \text{IoU} - \frac{|C - (A \cup B)|}{|C|} GIoU=IoU−∣C∣∣C−(A∪B)∣- C C C 是包围 A A A 和 B B B 的最小闭合区域面积。
- 用途:用于目标检测框回归,提高无重叠情况下的优化效果。
(2) CIOU (Complete Intersection over Union)
- 改进点:在GIOU基础上增加对长宽比的约束,提升框回归精度。
- 公式:
L CIoU = 1 − IoU + ρ 2 ( b , b g t ) c 2 + α v \mathcal{L}_{\text{CIoU}} = 1 - \text{IoU} + \frac{\rho^2(b, b^{gt})}{c^2} + \alpha v LCIoU=1−IoU+c2ρ2(b,bgt)+αv- ρ \rho ρ:预测框与真实框中心点的欧氏距离;
- c c c:最小包围框的对角线长度;
- v = 4 π 2 ( arctan w g t h g t − arctan w h ) 2 v = \frac{4}{\pi^2} \left( \arctan \frac{w^{gt}}{h^{gt}} - \arctan \frac{w}{h} \right)^2 v=π24(arctanhgtwgt−arctanhw)2(长宽比一致性);
- α = v ( 1 − IoU ) + v \alpha = \frac{v}{(1 - \text{IoU}) + v} α=(1−IoU)+vv。
- 用途:需高精度框回归的任务(如小目标检测)。
(3) EIOU (Efficient Intersection over Union)
- 改进点:将CIOU的长宽比约束分解为宽度和高度差异的直接优化。
- 公式:
L EIoU = 1 − IoU + ρ 2 ( b , b g t ) c 2 + ρ 2 ( w , w g t ) c w 2 + ρ 2 ( h , h g t ) c h 2 \mathcal{L}_{\text{EIoU}} = 1 - \text{IoU} + \frac{\rho^2(b, b^{gt})}{c^2} + \frac{\rho^2(w, w^{gt})}{c_w^2} + \frac{\rho^2(h, h^{gt})}{c_h^2} LEIoU=1−IoU+c2ρ2(b,bgt)+cw2ρ2(w,wgt)+ch2ρ2(h,hgt)- c w , c h c_w, c_h cw,ch:最小包围框的宽高。
- 用途:对长宽比敏感的场景(如人脸检测)。
(4) SIOU (Shape-Enhanced Intersection over Union)
- 改进点:引入角度对齐约束,提升方向一致性。
- 公式:
L SIoU = 1 − IoU + λ angle + λ dist + λ shape \mathcal{L}_{\text{SIoU}} = 1 - \text{IoU} + \lambda_{\text{angle}} + \lambda_{\text{dist}} + \lambda_{\text{shape}} LSIoU=1−IoU+λangle+λdist+λshape- 角度损失: λ angle = 1 − 2 sin 2 ( θ ) \lambda_{\text{angle}} = 1 - 2 \sin^2(\theta) λangle=1−2sin2(θ)( θ \theta θ为预测框与真实框的角度差异);
- 距离损失和形状损失通过角度调整权重。
- 用途:需方向对齐的任务(如车辆检测)。
(5) WIOU (Weighted Intersection over Union)
- 改进点:动态调整样本权重,关注困难样本。
- 公式:
L WIoU = r ⋅ ( 1 − IoU ) , r = e ( 1 − IoU ) γ \mathcal{L}_{\text{WIoU}} = r \cdot (1 - \text{IoU}), \quad r = \frac{e^{(1 - \text{IoU})}}{\gamma} LWIoU=r⋅(1−IoU),r=γe(1−IoU)- r r r 为动态权重因子, γ \gamma γ 为超参数。
- 用途:样本不平衡场景(如遮挡目标检测)。
2. 对比表格
方法 | 核心改进 | 优点 | 缺点 | 应用场景 |
---|---|---|---|---|
IoU | 基础重叠度量 | 简单直观,计算快 | 无重叠时梯度消失,忽略形状和方向 | 初步框评估 |
GIoU | 引入最小闭合区域 C C C | 解决无重叠梯度问题 | 长宽比优化不足 | 一般目标检测 |
CIoU | 增加中心点距离和长宽比约束 | 高精度框回归 | 计算复杂,长宽比依赖近似 | 小目标检测 |
EIoU | 分解长宽比为宽高独立约束 | 更直接优化尺寸,计算高效 | 对极端长宽比敏感 | 人脸/文字检测 |
SIoU | 角度对齐和方向一致性 | 提升方向敏感目标的精度 | 计算复杂度高 | 车辆/行人检测 |
WIoU | 动态样本权重 | 关注困难样本,缓解不平衡 | 需调参,可能过拟合困难样本 | 遮挡/复杂场景检测 |
3. 核心区别
- 优化目标:
- GIoU/CIoU/EIoU 逐步细化几何约束(覆盖区域→中心点→长宽比→宽高独立);
- SIoU 强调方向对齐;
- WIoU 通过权重动态调整样本重要性。
- 计算复杂度:SIoU > CIOU > EIOU > GIOU > WIOU。
- 适用场景:
- 无重叠目标:GIOU;
- 高精度回归:CIOU/EIOU;
- 方向敏感目标:SIOU;
- 样本不平衡:WIOU。
4. 选择建议
- 通用场景:优先CIOU或EIOU;
- 方向敏感目标:SIOU;
- 困难样本多:WIOU;
- 简单快速:GIOU。