
GBD数据库分析
小雷信息医学
医学信息技术交叉学科从业者,分享医学数据库、人工智能、医学图像处理等
联系wx方式:lqyx0033
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
如何进行GBD数据库的前沿分析 Frontier analysis(GBD系列第七集)
如何进行GBD数据库的前沿分析 Frontier analysis(GBD系列第七集)原创 2025-03-03 18:32:16 · 830 阅读 · 0 评论 -
如果利用 ARIMA 模型进行GBD数据库的全球疾病负担趋势预测 (GBD系列第五集)
自回归积分滑动平均 (ARIMA) 模型是一种广泛使用的统计方法,专门设计用于分析和预测时间序列数据。与假设数据点彼此独立的传统回归模型不同,ARIMA 模型明确考虑了时间序列数据中固有的序列相关性。ARIMA 模型通常表示为 ARIMA(p, d, q),其中 p 是自回归阶数,d 是积分阶数,q 是滑动平均阶数。例如,ARIMA(1, 1, 1) 模型表示具有一个自回归项、一次差分和一个滑动平均项的模型。在公共卫生研究领域,GBD数据库结合ARIMA预测分析,已成为高质量论文写作的重要工具。原创 2025-02-18 17:43:04 · 872 阅读 · 0 评论 -
怎么做GBD数据库SCI论文常见的第一张表格:EAPC统计三线表(GBD系列第三集)
EAPC 是用来衡量某疾病指标(如发病率、死亡率、伤残调整生命年等)在特定时间段内的变化趋势。它反映了该指标的增长或下降速度,公式如下:β\betaβ是回归模型中时间变量的系数;eee是自然对数的底数(约等于2.718)。通过线性回归模型,可以拟合疾病指标的自然对数值与时间的关系,计算出 β\betaβ,从而得到 EAPC。常见文章中第一张表格如下:那么该如何计算EAPC呢?如下图是示例数据。转载 2024-12-26 20:12:29 · 3264 阅读 · 0 评论